6,245 research outputs found

    Invariant Measures for Dissipative Dynamical Systems: Abstract Results and Applications

    Full text link
    In this work we study certain invariant measures that can be associated to the time averaged observation of a broad class of dissipative semigroups via the notion of a generalized Banach limit. Consider an arbitrary complete separable metric space XX which is acted on by any continuous semigroup {S(t)}t≥0\{S(t)\}_{t \geq 0}. Suppose that §(t)}t≥0\S(t)\}_{t \geq 0} possesses a global attractor A\mathcal{A}. We show that, for any generalized Banach limit LIMT→∞\underset{T \rightarrow \infty}{\rm{LIM}} and any distribution of initial conditions m0\mathfrak{m}_0, that there exists an invariant probability measure m\mathfrak{m}, whose support is contained in A\mathcal{A}, such that ∫Xϕ(x)dm(x)=LIMT→∞1T∫0T∫Xϕ(S(t)x)dm0(x)dt, \int_{X} \phi(x) d\mathfrak{m} (x) = \underset{T\to \infty}{\rm{LIM}} \frac{1}{T}\int_0^T \int_X \phi(S(t) x) d \mathfrak{m}_0(x) d t, for all observables ϕ\phi living in a suitable function space of continuous mappings on XX. This work is based on a functional analytic framework simplifying and generalizing previous works in this direction. In particular our results rely on the novel use of a general but elementary topological observation, valid in any metric space, which concerns the growth of continuous functions in the neighborhood of compact sets. In the case when {S(t)}t≥0\{S(t)\}_{t \geq 0} does not possess a compact absorbing set, this lemma allows us to sidestep the use of weak compactness arguments which require the imposition of cumbersome weak continuity conditions and limits the phase space XX to the case of a reflexive Banach space. Two examples of concrete dynamical systems where the semigroup is known to be non-compact are examined in detail.Comment: To appear in Communications in Mathematical Physic

    Versal unfoldings for linear retarded functional differential equations

    Get PDF
    We consider parametrized families of linear retarded functional differential equations (RFDEs) projected onto finite-dimensional invariant manifolds, and address the question of versality of the resulting parametrized family of linear ordinary differential equations. A sufficient criterion for versality is given in terms of readily computable quantities. In the case where the unfolding is not versal, we show how to construct a perturbation of the original linear RFDE (in terms of delay differential operators) whose finite-dimensional projection generates a versal unfolding. We illustrate the theory with several examples, and comment on the applicability of these results to bifurcation analyses of nonlinear RFDEs

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics

    Numerical approximation of the non-essential spectrum of abstract delay differential equations

    Get PDF
    Abstract Delay Differential Equations (ADDEs) extend Delay Differential Equations (DDEs) from finite to infinite dimension. They arise in many application fields. From a dynamical system point of view, the stability analysis of an equilibrium is the first relevant question, which can be reduced to the stability of the zero solution of the corresponding linearized system. In the understanding of the linear case, the essential and the non-essential spectra of the infinitesimal generator are crucial. We propose to extend the infinitesimal generator approach developed for linear DDEs to approximate the non-essential spectrum of linear ADDEs. We complete the paper with the numerical results for a homogeneous neural field model with transmission delay of a single population of neurons

    Stationary Solutions of Neutral Stochastic Partial Differential Equations with Delays in the Highest-Order Derivatives

    Full text link
    In this work, we shall consider the existence and uniqueness of stationary solutions to stochastic partial functional differential equations with additive noise in which a neutral type of delay is explicitly presented. We are especially concerned about those delays appearing in both spatial and temporal derivative terms in which the coefficient operator under spatial variables may take the same form as the infinitesimal generator of the equation. We establish the stationary property of the neutral system under investigation by focusing on distributed delays. In the end, an illustrative example is analysed to explain the theory in this work

    On strong stability and stabilizability of systems of neutral type

    Get PDF
    International audienceFor linear stationary systems, the infinite dimensional framework allows one to distinguish different notions of stability: weak, strong or exponential. The purpose of this chapler is to investigate the problem of strong stability, i.e. asymptotic non-exponential stability for linear systems of neutral type in order to use this characterization in the study of the stabilizability problem for this type of systems. An important tool in this investigation is the Riesz basis property of generalized eigenspaces of the neutral system, because that the generalized eigenvectors do not form, in general, a Riesz basis. This allows one to describe more precisely asymptotic non-exponential stability of neutral systems. For a particular case, conditions of strong stabilizability of neutral type systems are given with a feedback law without derivative of the delayed state
    • …
    corecore