2,307 research outputs found

    Macroscopic entanglement of many-magnon states

    Full text link
    We study macroscopic entanglement of various pure states of a one-dimensional N-spin system with N>>1. Here, a quantum state is said to be macroscopically entangled if it is a superposition of macroscopically distinct states. To judge whether such superposition is hidden in a general state, we use an essentially unique index p: A pure state is macroscopically entangled if p=2, whereas it may be entangled but not macroscopically if p<2. This index is directly related to the stability of the state. We calculate the index p for various states in which magnons are excited with various densities and wavenumbers. We find macroscopically entangled states (p=2) as well as states with p=1. The former states are unstable in the sense that they are unstable against some local measurements. On the other hand, the latter states are stable in the senses that they are stable against local measurements and that their decoherence rates never exceed O(N) in any weak classical noises. For comparison, we also calculate the von Neumann entropy S(N) of a subsystem composed of N/2 spins as a measure of bipartite entanglement. We find that S(N) of some states with p=1 is of the same order of magnitude as the maximum value N/2. On the other hand, S(N) of the macroscopically entangled states with p=2 is as small as O(log N)<< N/2. Therefore, larger S(N) does not mean more instability. We also point out that these results are analogous to those for interacting many bosons. Furthermore, the origin of the huge entanglement, as measured either by p or S(N), is discussed to be due to the spatial propagation of magnons.Comment: 30 pages, 5 figures. The manuscript has been shortened and typos have been fixed. Data points of figures have been made larger in order to make them clearly visibl

    Many body localization and thermalization in quantum statistical mechanics

    Full text link
    We review some recent developments in the statistical mechanics of isolated quantum systems. We provide a brief introduction to quantum thermalization, paying particular attention to the `Eigenstate Thermalization Hypothesis' (ETH), and the resulting `single-eigenstate statistical mechanics'. We then focus on a class of systems which fail to quantum thermalize and whose eigenstates violate the ETH: These are the many-body Anderson localized systems; their long-time properties are not captured by the conventional ensembles of quantum statistical mechanics. These systems can locally remember forever information about their local initial conditions, and are thus of interest for possibilities of storing quantum information. We discuss key features of many-body localization (MBL), and review a phenomenology of the MBL phase. Single-eigenstate statistical mechanics within the MBL phase reveals dynamically-stable ordered phases, and phase transitions among them, that are invisible to equilibrium statistical mechanics and can occur at high energy and low spatial dimensionality where equilibrium ordering is forbidden.Comment: Updated to reflect recent development

    Spin-Mediated Consciousness: Theory, Experimental Studies, Further Development & Related Topics

    Full text link
    We postulate that consciousness is intrinsically connected to quantum spin since the latter is the origin of quantum effects in both Bohm and Hestenes quantum formulisms and a fundamental quantum process associated with the structure of space-time. Applying these ideas to the particular structures and dynamics of the brain, we have developed a detailed model of quantum consciousness. We have also carried out experiments from the perspective of our theory to test the possibility of quantum-entangling the quantum entities inside the brain with those of an external chemical substance. We found that applying magnetic pulses to the brain when an anaesthetic was placed in between caused the brain to feel the effect of said anaesthetic as if the test subject had actually inhaled the same. We further found that drinking water exposed to magnetic pulses, laser light or microwave when an anaesthetic was placed in between also causes brain effects in various degrees. Additional experiments indicate that the said brain effect is indeed the consequence of quantum entanglement. Recently we have studied non-local effects in simple physics systems. We have found that the pH value, temperature and gravity of a liquid in the detecting reservoirs can be non-locally affected through manipulating another liquid in a remote reservoir quantum-entangled with the former. In particular, the pH value changes in the same direction as that being manipulated; the temperature can change against that of local environment; and the gravity can change against local gravity. We suggest that they are mediated by quantum entanglement between nuclear and/or electron spins in treated liquid and discuss the profound implications of these results. This paper now also includes materials on further development of the theory and related topics.Comment: 92 pages; expanded content; minor corrections; for additional information, please visit http://quantumbrain.or

    Black hole holography and mean field evolution

    Get PDF
    Holographic theories representing black holes are expected to exhibit quantum chaos. We argue if the laws of quantum mechanics are expected to hold for observers inside such black holes, then such holographic theories must have a mean field approximation valid for typical black hole states, and for timescales approaching the scrambling time. Using simple spin models as examples, we examine the predictions of such an approach for observers inside black holes, and more speculatively inside cosmological horizons.Comment: 11 pages, 5 figure

    Non-thermalization in trapped atomic ion spin chains

    Full text link
    Linear arrays of trapped and laser cooled atomic ions are a versatile platform for studying emergent phenomena in strongly-interacting many-body systems. Effective spins are encoded in long-lived electronic levels of each ion and made to interact through laser mediated optical dipole forces. The advantages of experiments with cold trapped ions, including high spatiotemporal resolution, decoupling from the external environment, and control over the system Hamiltonian, are used to measure quantum effects not always accessible in natural condensed matter samples. In this review we highlight recent work using trapped ions to explore a variety of non-ergodic phenomena in long-range interacting spin-models which are heralded by memory of out-of-equilibrium initial conditions. We observe long-lived memory in static magnetizations for quenched many-body localization and prethermalization, while memory is preserved in the periodic oscillations of a driven discrete time crystal state.Comment: 14 pages, 5 figures, submitted for edition of Phil. Trans. R. Soc. A on "Breakdown of ergodicity in quantum systems
    corecore