8,319 research outputs found

    Inter-individual variation of the human epigenome & applications

    Get PDF

    Exploiting Structural Properties in the Analysis of High-dimensional Dynamical Systems

    Get PDF
    The physical and cyber domains with which we interact are filled with high-dimensional dynamical systems. In machine learning, for instance, the evolution of overparametrized neural networks can be seen as a dynamical system. In networked systems, numerous agents or nodes dynamically interact with each other. A deep understanding of these systems can enable us to predict their behavior, identify potential pitfalls, and devise effective solutions for optimal outcomes. In this dissertation, we will discuss two classes of high-dimensional dynamical systems with specific structural properties that aid in understanding their dynamic behavior. In the first scenario, we consider the training dynamics of multi-layer neural networks. The high dimensionality comes from overparametrization: a typical network has a large depth and hidden layer width. We are interested in the following question regarding convergence: Do network weights converge to an equilibrium point corresponding to a global minimum of our training loss, and how fast is the convergence rate? The key to those questions is the symmetry of the weights, a critical property induced by the multi-layer architecture. Such symmetry leads to a set of time-invariant quantities, called weight imbalance, that restrict the training trajectory to a low-dimensional manifold defined by the weight initialization. A tailored convergence analysis is developed over this low-dimensional manifold, showing improved rate bounds for several multi-layer network models studied in the literature, leading to novel characterizations of the effect of weight imbalance on the convergence rate. In the second scenario, we consider large-scale networked systems with multiple weakly-connected groups. Such a multi-cluster structure leads to a time-scale separation between the fast intra-group interaction due to high intra-group connectivity, and the slow inter-group oscillation, due to the weak inter-group connection. We develop a novel frequency-domain network coherence analysis that captures both the coherent behavior within each group, and the dynamical interaction between groups, leading to a structure-preserving model-reduction methodology for large-scale dynamic networks with multiple clusters under general node dynamics assumptions

    Linear Amplification in Nonequilibrium Turbulent Boundary Layers

    Get PDF
    Resolvent analysis is applied to nonequilibrium incompressible adverse pressure gradient (APG) turbulent boundary layers (TBL) and hypersonic boundary layers with high temperature real gas effects, including chemical nonequilibrium. Resolvent analysis is an equation-based, scale-dependent decomposition of the Navier Stokes equations, linearized about a known mean flow field. The decomposition identifies the optimal response and forcing modes, ranked by their linear amplification. To treat the nonequilibrium APG TBL, a biglobal resolvent analysis approach is used to account for the streamwise and wall-normal inhomogeneities in the streamwise developing flow. For the hypersonic boundary layer in chemical nonequilibrium, the resolvent analysis is constructed using a parallel flow assumption, incorporating Nâ‚‚, Oâ‚‚, NO, N, and O as a mixture of chemically reacting gases. Biglobal resolvent analysis is first applied to the zero pressure gradient (ZPG) TBL. Scaling relationships are determined for the spanwise wavenumber and temporal frequency that admit self-similar resolvent modes in the inner layer, mesolayer, and outer layer regions of the ZPG TBL. The APG effects on the inner scaling of the biglobal modes are shown to diminish as their self-similarity improves with increased Reynolds number. An increase in APG strength is shown to increase the linear amplification of the large-scale biglobal modes in the outer region, similar to the energization of large scale modes observed in simulation. The linear amplification of these modes grows linearly with the APG history, measured as the streamwise averaged APG strength, and relates to a novel pressure-based velocity scale. Resolvent analysis is then used to identify the length scales most affected by the high-temperature gas effects in hypersonic TBLs. It is shown that the high-temperature gas effects primarily affect modes localized near the peak mean temperature. Due to the chemical nonequilibrium effects, the modes can be linearly amplified through changes in chemical concentration, which have non-negligible effects on the higher order modes. Correlations in the components of the small-scale resolvent modes agree qualitatively with similar correlations in simulation data. Finally, efficient strategies for resolvent analysis are presented. These include an algorithm to autonomously sample the large amplification regions using a Bayesian Optimization-like approach and a projection-based method to approximate resolvent analysis through a reduced eigenvalue problem, derived from calculus of variations.</p

    A Unifying Theory for Graph Transformation

    Get PDF
    The field of graph transformation studies the rule-based transformation of graphs. An important branch is the algebraic graph transformation tradition, in which approaches are defined and studied using the language of category theory. Most algebraic graph transformation approaches (such as DPO, SPO, SqPO, and AGREE) are opinionated about the local contexts that are allowed around matches for rules, and about how replacement in context should work exactly. The approaches also differ considerably in their underlying formal theories and their general expressiveness (e.g., not all frameworks allow duplication). This dissertation proposes an expressive algebraic graph transformation approach, called PBPO+, which is an adaptation of PBPO by Corradini et al. The central contribution is a proof that PBPO+ subsumes (under mild restrictions) DPO, SqPO, AGREE, and PBPO in the important categorical setting of quasitoposes. This result allows for a more unified study of graph transformation metatheory, methods, and tools. A concrete example of this is found in the second major contribution of this dissertation: a graph transformation termination method for PBPO+, based on decreasing interpretations, and defined for general categories. By applying the proposed encodings into PBPO+, this method can also be applied for DPO, SqPO, AGREE, and PBPO

    Securing NextG networks with physical-layer key generation: A survey

    Get PDF
    As the development of next-generation (NextG) communication networks continues, tremendous devices are accessing the network and the amount of information is exploding. However, with the increase of sensitive data that requires confidentiality to be transmitted and stored in the network, wireless network security risks are further amplified. Physical-layer key generation (PKG) has received extensive attention in security research due to its solid information-theoretic security proof, ease of implementation, and low cost. Nevertheless, the applications of PKG in the NextG networks are still in the preliminary exploration stage. Therefore, we survey existing research and discuss (1) the performance advantages of PKG compared to cryptography schemes, (2) the principles and processes of PKG, as well as research progresses in previous network environments, and (3) new application scenarios and development potential for PKG in NextG communication networks, particularly analyzing the effect and prospects of PKG in massive multiple-input multiple-output (MIMO), reconfigurable intelligent surfaces (RISs), artificial intelligence (AI) enabled networks, integrated space-air-ground network, and quantum communication. Moreover, we summarize open issues and provide new insights into the development trends of PKG in NextG networks

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Learning recommender systems from biased user interactions

    Get PDF
    Recommender systems have been widely deployed to help users quickly find what they need from a collection of items. Predominant recommendation methods rely on supervised learning models to predict user ratings on items or the probabilities of users interacting with items. In addition, reinforcement learning models are crucial in improving long-term user engagement within recommender systems. In practice, both of these recommendation methods are commonly trained on logged user interactions and, therefore, subject to bias present in logged user interactions. This thesis concerns complex forms of bias in real-world user behaviors and aims to mitigate the effect of bias on reinforcement learning-based recommendation methods. The first part of the thesis consists of two research chapters, each dedicated to tackling a specific form of bias: dynamic selection bias and multifactorial bias. To mitigate the effect of dynamic selection bias and multifactorial bias, we propose a bias propensity estimation method for each. By incorporating the results from the bias propensity estimation methods, the widely used inverse propensity scoring-based debiasing method can be extended to correct for the corresponding bias. The second part of the thesis consists of two chapters that concern the effect of bias on reinforcement learning-based recommendation methods. Its first chapter focuses on mitigating the effect of bias on simulators, which enables the learning and evaluation of reinforcement learning-based recommendation methods. Its second chapter further explores different state encoders for reinforcement learning-based recommendation methods when learning and evaluating with the proposed debiased simulator

    Sound Event Detection by Exploring Audio Sequence Modelling

    Get PDF
    Everyday sounds in real-world environments are a powerful source of information by which humans can interact with their environments. Humans can infer what is happening around them by listening to everyday sounds. At the same time, it is a challenging task for a computer algorithm in a smart device to automatically recognise, understand, and interpret everyday sounds. Sound event detection (SED) is the process of transcribing an audio recording into sound event tags with onset and offset time values. This involves classification and segmentation of sound events in the given audio recording. SED has numerous applications in everyday life which include security and surveillance, automation, healthcare monitoring, multimedia information retrieval, and assisted living technologies. SED is to everyday sounds what automatic speech recognition (ASR) is to speech and automatic music transcription (AMT) is to music. The fundamental questions in designing a sound recognition system are, which portion of a sound event should the system analyse, and what proportion of a sound event should the system process in order to claim a confident detection of that particular sound event. While the classification of sound events has improved a lot in recent years, it is considered that the temporal-segmentation of sound events has not improved in the same extent. The aim of this thesis is to propose and develop methods to improve the segmentation and classification of everyday sound events in SED models. In particular, this thesis explores the segmentation of sound events by investigating audio sequence encoding-based and audio sequence modelling-based methods, in an effort to improve the overall sound event detection performance. In the first phase of this thesis, efforts are put towards improving sound event detection by explicitly conditioning the audio sequence representations of an SED model using sound activity detection (SAD) and onset detection. To achieve this, we propose multi-task learning-based SED models in which SAD and onset detection are used as auxiliary tasks for the SED task. The next part of this thesis explores self-attention-based audio sequence modelling, which aggregates audio representations based on temporal relations within and between sound events, scored on the basis of the similarity of sound event portions in audio event sequences. We propose SED models that include memory-controlled, adaptive, dynamic, and source separation-induced self-attention variants, with the aim to improve overall sound recognition

    Natural and Technological Hazards in Urban Areas

    Get PDF
    Natural hazard events and technological accidents are separate causes of environmental impacts. Natural hazards are physical phenomena active in geological times, whereas technological hazards result from actions or facilities created by humans. In our time, combined natural and man-made hazards have been induced. Overpopulation and urban development in areas prone to natural hazards increase the impact of natural disasters worldwide. Additionally, urban areas are frequently characterized by intense industrial activity and rapid, poorly planned growth that threatens the environment and degrades the quality of life. Therefore, proper urban planning is crucial to minimize fatalities and reduce the environmental and economic impacts that accompany both natural and technological hazardous events
    • …
    corecore