51,571 research outputs found

    Orbital stability of periodic waves in the class of reduced Ostrovsky equations

    Get PDF
    Periodic travelling waves are considered in the class of reduced Ostrovsky equations that describe low-frequency internal waves in the presence of rotation. The reduced Ostrovsky equations with either quadratic or cubic nonlinearities can be transformed to integrable equations of the Klein--Gordon type by means of a change of coordinates. By using the conserved momentum and energy as well as an additional conserved quantity due to integrability, we prove that small-amplitude periodic waves are orbitally stable with respect to subharmonic perturbations, with period equal to an integer multiple of the period of the wave. The proof is based on construction of a Lyapunov functional, which is convex at the periodic wave and is conserved in the time evolution. We also show numerically that convexity of the Lyapunov functional holds for periodic waves of arbitrary amplitudes.Comment: 34 page

    On well-posedness, stability, and bifurcation for the axisymmetric surface diffusion flow

    Get PDF
    In this article, we study the axisymmetric surface diffusion flow (ASD), a fourth-order geometric evolution law. In particular, we prove that ASD generates a real analytic semiflow in the space of (2 + \alpha)-little-H\"older regular surfaces of revolution embedded in R^3 and satisfying periodic boundary conditions. We also give conditions for global existence of solutions and prove that solutions are real analytic in time and space. Further, we investigate the geometric properties of solutions to ASD. Utilizing a connection to axisymmetric surfaces with constant mean curvature, we characterize the equilibria of ASD. Then, focusing on the family of cylinders, we establish results regarding stability, instability and bifurcation behavior, with the radius acting as a bifurcation parameter for the problem.Comment: 37 pages, 6 figures, To Appear in SIAM J. Math. Ana

    Generic Morse-Smale property for the parabolic equation on the circle

    Get PDF
    In this paper, we show that, for scalar reaction-diffusion equations ut=uxx+f(x,u,ux)u_t=u_{xx}+f(x,u,u_x) on the circle S1S^1, the Morse-Smale property is generic with respect to the non-linearity ff. In \cite{CR}, Czaja and Rocha have proved that any connecting orbit, which connects two hyperbolic periodic orbits, is transverse and that there does not exist any homoclinic orbit, connecting a hyperbolic periodic orbit to itself. In \cite{JR}, we have shown that, generically with respect to the non-linearity ff, all the equilibria and periodic orbits are hyperbolic. Here we complete these results by showing that any connecting orbit between two hyperbolic equilibria with distinct Morse indices or between a hyperbolic equilibrium and a hyperbolic periodic orbit is automatically transverse. We also show that, generically with respect to ff, there does not exist any connection between equilibria with the same Morse index. The above properties, together with the existence of a compact global attractor and the Poincar\'e-Bendixson property, allow us to deduce that, generically with respect to ff, the non-wandering set consists in a finite number of hyperbolic equilibria and periodic orbits . The main tools in the proofs include the lap number property, exponential dichotomies and the Sard-Smale theorem. The proofs also require a careful analysis of the asymptotic behavior of solutions of the linearized equations along the connecting orbits

    Optimal linear stability condition for scalar differential equations with distributed delay

    Get PDF
    Linear scalar differential equations with distributed delays appear in the study of the local stability of nonlinear differential equations with feedback, which are common in biology and physics. Negative feedback loops tend to promote oscillations around steady states, and their stability depends on the particular shape of the delay distribution. Since in applications the mean delay is often the only reliable information available about the distribution, it is desirable to find conditions for stability that are independent from the shape of the distribution. We show here that for a given mean delay, the linear equation with distributed delay is asymptotically stable if the associated differential equation with a discrete delay is asymptotically stable. We illustrate this criterion on a compartment model of hematopoietic cell dynamics to obtain sufficient conditions for stability
    • …
    corecore