114 research outputs found

    Undecidable Properties of Limit Set Dynamics of Cellular Automata

    Get PDF
    Cellular Automata (CA) are discrete dynamical systems and an abstract model of parallel computation. The limit set of a cellular automaton is its maximal topological attractor. A well know result, due to Kari, says that all nontrivial properties of limit sets are undecidable. In this paper we consider properties of limit set dynamics, i.e. properties of the dynamics of Cellular Automata restricted to their limit sets. There can be no equivalent of Kari's Theorem for limit set dynamics. Anyway we show that there is a large class of undecidable properties of limit set dynamics, namely all properties of limit set dynamics which imply stability or the existence of a unique subshift attractor. As a consequence we have that it is undecidable whether the cellular automaton map restricted to the limit set is the identity, closing, injective, expansive, positively expansive, transitive

    On Factor Universality in Symbolic Spaces

    Get PDF
    The study of factoring relations between subshifts or cellular automata is central in symbolic dynamics. Besides, a notion of intrinsic universality for cellular automata based on an operation of rescaling is receiving more and more attention in the literature. In this paper, we propose to study the factoring relation up to rescalings, and ask for the existence of universal objects for that simulation relation. In classical simulations of a system S by a system T, the simulation takes place on a specific subset of configurations of T depending on S (this is the case for intrinsic universality). Our setting, however, asks for every configurations of T to have a meaningful interpretation in S. Despite this strong requirement, we show that there exists a cellular automaton able to simulate any other in a large class containing arbitrarily complex ones. We also consider the case of subshifts and, using arguments from recursion theory, we give negative results about the existence of universal objects in some classes

    Ultimate Traces of Cellular Automata

    Get PDF
    A cellular automaton (CA) is a parallel synchronous computing model, which consists in a juxtaposition of finite automata (cells) whose state evolves according to that of their neighbors. Its trace is the set of infinite words representing the sequence of states taken by some particular cell. In this paper we study the ultimate trace of CA and partial CA (a CA restricted to a particular subshift). The ultimate trace is the trace observed after a long time run of the CA. We give sufficient conditions for a set of infinite words to be the trace of some CA and prove the undecidability of all properties over traces that are stable by ultimate coincidence.Comment: 12 pages + 5 of appendix conference STACS'1

    Sofic Trace of a Cellular Automaton

    Get PDF
    The trace subshift of a cellular automaton is the subshift of all possible columns that may appear in a space-time diagram, ie the infinite sequence of states of a particular cell of a configuration; in the language of symbolic dynamics one says that it is a factor system. In this paper we study conditions for a sofic subshift to be the trace of a cellular automaton.Comment: 10 pages + 6 for included proof

    A Garden of Eden theorem for Anosov diffeomorphisms on tori

    Full text link
    Let ff be an Anosov diffeomorphism of the nn-dimensional torus Tn{\mathbb{T}}^n and Ď„\tau a continuous self-mapping of Tn{\mathbb{T}}^n commuting with ff. We prove that Ď„\tau is surjective if and only if the restriction of Ď„\tau to each homoclinicity class of ff is injective.Comment: 9 page

    Revisiting the Rice Theorem of Cellular Automata

    Full text link
    A cellular automaton is a parallel synchronous computing model, which consists in a juxtaposition of finite automata whose state evolves according to that of their neighbors. It induces a dynamical system on the set of configurations, i.e. the infinite sequences of cell states. The limit set of the cellular automaton is the set of configurations which can be reached arbitrarily late in the evolution. In this paper, we prove that all properties of limit sets of cellular automata with binary-state cells are undecidable, except surjectivity. This is a refinement of the classical "Rice Theorem" that Kari proved on cellular automata with arbitrary state sets.Comment: 12 pages conference STACS'1
    • …
    corecore