85 research outputs found

    Sampled data systems passivity and discrete port-Hamiltonian systems

    Get PDF
    In this paper, we present a novel way to approach the interconnection of a continuous and a discrete time physical system first presented in [1][2] [3]. This is done in a way which preserves passivity of the coupled system independently of the sampling time T. This strategy can be used both in the field of telemanipulation, for the implementation of a passive master/slave system on a digital transmission line with varying time delays and possible loss of packets (e.g., the Internet), and in the field of haptics, where the virtual environment should `feel¿ like a physical equivalent system

    Passivity-Based adaptive bilateral teleoperation control for uncertain manipulators without jerk measurements

    Get PDF
    In this work, we consider the bilateral teleoperation problem of cooperative robotic systems in a Single-Master Multi-Slave (SM/MS) configuration, which is able to perform load transportation tasks in the presence of parametric uncertainty in the robot kinematic and dynamic models. The teleoperation architecture is based on the two-layer approach placed in a hierarchical structure, whose top and bottom layers are responsible for ensuring the transparency and stability properties respectively. The load transportation problem is tackled by using the formation control approach wherein the desired translational velocity and interaction force are provided to the master robot by the user, while the object is manipulated with a bounded constant force by the slave robots. Firstly, we develop an adaptive kinematic-based control scheme based on a composite adaptation law to solve the cooperative control problem for robots with uncertain kinematics. Secondly, the dynamic adaptive control for cooperative robots is implemented by means of a cascade control strategy, which does not require the measurement of the time derivative of force (which requires jerk measurements). The combination of the Lyapunov stability theory and the passivity formalism are used to establish the stability and convergence property of the closed-loop control system. Simulations and experimental results illustrate the performance and feasibility of the proposed control scheme.No presente trabalho, considera-se o problema de teleoperação bilateral de um sistema robótico cooperativo do tipo single-master e multiple-slaves (SM/MS) capaz de realizar tarefas de transporte de carga na presença de incertezas paramétricas no modelo cinemático e dinâmico dos robôs. A arquitetura de teleoperação está baseada na abordagem de duas camadas em estrutura hierárquica, onde as camadas superior e inferior são responsáveis por assegurar as propriedades de transparência e estabilidade respectivamente. O problema de transporte de carga é formulado usando a abordagem de controle de formação onde a velocidade de translação desejada e a força de interação são fornecidas ao robô mestre pelo operador, enquanto o objeto é manipulado pelos robôs escravos com uma força constante limitada. Primeiramente, desenvolve-se um esquema de controle adaptativo cinemático baseado em uma lei de adaptação composta para solucionar o problema de controle cooperativo de robôs com cinemática incerta. Em seguida, o controle adaptativo dinâmico de robôs cooperativos é implementado por meio de uma estratégia de controle em cascata, que não requer a medição da derivada da força (o qual requer a derivada da aceleração ou jerk). A teoria de estabilidade de Lyapunov e o formalismo de passividade são usados para estabelecer as propriedades de estabilidade e a convergência do sistema de controle em malha-fechada. Resultados de simulações numéricas ilustram o desempenho e viabilidade da estratégia de controle proposta

    The Shape of Damping: Optimizing Damping Coefficients to Improve Transparency on Bilateral Telemanipulation

    Get PDF
    This thesis presents a novel optimization-based passivity control algorithm for hapticenabled bilateral teleoperation systems involving multiple degrees of freedom. In particular, in the context of energy-bounding control, the contribution focuses on the implementation of a passivity layer for an existing time-domain scheme, ensuring optimal transparency of the interaction along subsets of the environment space which are preponderant for the given task, while preserving the energy bounds required for passivity. The involved optimization problem is convex and amenable to real-time implementation. The effectiveness of the proposed design is validated via an experiment performed on a virtual teleoperated environment. The interplay between transparency and stability is a critical aspect in haptic-enabled bilateral teleoperation control. While it is important to present the user with the true impedance of the environment, destabilizing factors such as time delays, stiff environments, and a relaxed grasp on the master device may compromise the stability and safety of the system. Passivity has been exploited as one of the the main tools for providing sufficient conditions for stable teleoperation in several controller design approaches, such as the scattering algorithm, timedomain passivity control, energy bounding algorithm, and passive set position modulation. In this work it is presented an innovative energy-based approach, which builds upon existing time-domain passivity controllers, improving and extending their effectiveness and functionality. The set of damping coefficients are prioritized in each degree of freedom, the resulting transparency presents a realistic force feedback in comparison to the other directions. Thus, the prioritization takes effect using a quadratic programming algorithm to find the optimal values for the damping. Finally, the energy tanks approach on passivity control is a solution used to ensure stability in a system for robotics bilateral manipulation. The bilateral telemanipulation must maintain the principle of passivity in all moments to preserve the system\u2019s stability. This work presents a brief introduction to haptic devices as a master component on the telemanipulation chain; the end effector in the slave side is a representation of an interactive object within an environment having a force sensor as feedback signal. The whole interface is designed into a cross-platform framework named ROS, where the user interacts with the system. Experimental results are presented

    Geometric Scattering in Robotic Telemanipulation

    Get PDF
    In this paper, we study the interconnection of two robots, which are modeled as port-controlled Hamiltonian systems through a transmission line with time delay. There will be no analysis of the time delay, but its presence justifies the use of scattering variables to preserve passivity. The contributions of the paper are twofold: first, a geometrical, multidimensional, power-consistent exposition of telemanipulation of intrinsically passive controlled physical systems, with a clarification on impedance matching, and second, a system theoretic condition for the adaptation of a general port-controlled Hamiltonian system with dissipation (port-Hamiltonian system) to a transmission line

    Robust Adaptive Control of a Micro Telemanipulation System Using Sliding Mode-Based Force Estimation

    Get PDF
    Abstract-Piezoelectric actuators are widely used in micro manipulation applications. However, hysteresis nonlinearity limits the accuracy of these actuators. This paper presents a novel approach for utilizing a piezoelectric nano-stage as the slave manipulator of a teleoperation system based on a sliding mode controller. The Prandtl-Ishlinskii (PI) model is used to model actuator hysteresis in feedforward scheme to cancel out this nonlinearity. The presented approach requires full state and force measurements at both the master and slave sides. Such a system is costly and also difficult to implement. Therefore, sliding mode unknown input observer (UIO) is proposed for full state and force estimations. Furthermore, the effects of uncertainties in the constant parameters on the estimated external forces should be eliminated. So, a robust adaptive controller is proposed and its stability is guaranteed through the Lyapunov criterion. Performance of the proposed control architecture is verified through experiments

    KONTUR-2: Force-feedback Teleoperation from the International Space Station

    Get PDF
    This paper presents a new robot controller for space telerobotics missions specially designed to meet the requirements of KONTUR-2, a German & Russian telerobotics mission that addressed scientific and technological questions for future planetary explorations. In KONTUR-2, Earth and ISS have been used as a test-bed to evaluate and demonstrate a new technology for real-time telemanipulation from space. During the August 2015' experiments campaign, a cosmonaut teleoperated a robot manipulator located in Germany, using a force-feedback joystick from the Russian segment of the International Space Station (ISS). The focus of the paper is on the design and performance of the bilateral controller between ISS joystick and Earth robot. The controller is based on a 4-Channels architecture in which stability is guaranteed through passivity and the Time Delay Power Network (TDPN) concept. We show how the proposed approach successfully fulfills mission requirements, specially those related to system operation through space links and internet channels, involving time delays and data losses of different nature

    Multi-DoF Time Domain Passivity Approach Based Drift Compensation for Telemanipulation

    Get PDF
    When, in addition to stability, position synchronization is also desired in bilateral teleoperation, Time Domain Passivity Approach (TDPA) alone might not be able to fulfill the desired objective. This is due to an undesired effect caused by admittance type passivity controllers, namely position drift. Previous works focused on developing TDPA-based drift compensation methods to solve this issue. It was shown that, in addition to reducing drift, one of the proposed methods was able to keep the force signals within their normal range, guaranteeing the safety of the task. However, no multi-DoF treatment of those approaches has been addressed. In that scope, this paper focuses on providing an extension of previous TDPA-based approaches to multi-DoF Cartesian-space teleoperation. An analysis of the convergence properties of the presented method is also provided. In addition, its applicability to multi-DoF devices is shown through hardware experiments and numerical simulation with round-trip time delays up to 700 ms.Comment: 2019 19th International Conference on Advanced Robotics (ICAR
    corecore