15 research outputs found

    Coupling of flow, contact mechanics and friction, generating waves in a fractured porous medium

    Full text link
    We present a mixed dimensional model for a fractured poro-elasic medium including contact mechanics. The fracture is a lower dimensional surface embedded in a bulk poro-elastic matrix. The flow equation on the fracture is a Darcy type model that follows the cubic law for permeability. The bulk poro-elasticity is governed by fully dynamic Biot equations. The resulting model is a mixed dimensional type where the fracture flow on a surface is coupled to a bulk flow and geomechanics model. The particularity of the work here is in considering fully dynamic Biot equation, that is, including an inertia term, and the contact mechanics including friction for the fracture surface. We prove the well-posedness of the continuous model

    Efficient solvers for hybridized three-field mixed finite element coupled poromechanics

    Full text link
    We consider a mixed hybrid finite element formulation for coupled poromechanics. A stabilization strategy based on a macro-element approach is advanced to eliminate the spurious pressure modes appearing in undrained/incompressible conditions. The efficient solution of the stabilized mixed hybrid block system is addressed by developing a class of block triangular preconditioners based on a Schur-complement approximation strategy. Robustness, computational efficiency and scalability of the proposed approach are theoretically discussed and tested using challenging benchmark problems on massively parallel architectures

    Development of robust and efficient solution strategies for coupled problems

    Get PDF
    Det er mange modeller i moderne vitenskap hvor sammenkoblingen mellom forskjellige fysiske prosesser er svært viktig. Disse finner man for eksempel i forbindelse med lagring av karbondioksid i undervannsreservoarer, flyt i kroppsvev, kreftsvulstvekst og geotermisk energiutvinning. Denne avhandlingen har to fokusområder som er knyttet til sammenkoblede modeller. Det første er å utvikle pålitelige og effektive tilnærmingsmetoder, og det andre er utviklingen av en ny modell som tar for seg flyt i et porøst medium som består av to forskjellige materialer. For tilnærmingsmetodene har det vært et spesielt fokus på splittemetoder. Dette er metoder hvor hver av de sammenkoblede modellene håndteres separat, og så itererer man mellom dem. Dette gjøres i hovedsak fordi man kan utnytte tilgjengelig teori og programvare for å løse hver undermodell svært effektivt. Ulempen er at man kan ende opp med løsningsalgoritmer for den sammenkoblede modellen som er trege, eller ikke kommer frem til noen løsning i det hele tatt. I denne avhandlingen har tre forskjellige metoder for å forbedre splittemetoder blitt utviklet for tre forskjellige sammenkoblede modeller. Den første modellen beskriver flyt gjennom deformerbart porøst medium og er kjent som Biot ligningene. For å anvende en splittemetode på denne modellen har et stabiliseringsledd blitt tilført. Dette sikrer at metoden konvergerer (kommer frem til en løsning), men dersom man ikke skalerer stabiliseringsleddet riktig kan det ta veldig lang tid. Derfor har et intervall hvor den optimale skaleringen av stabiliseringsleddet befinner seg blitt identifisert, og utfra dette presenteres det en måte å praktisk velge den riktige skaleringen på. Den andre modellen er en fasefeltmodell for sprekkpropagering. Denne modellen løses vanligvis med en splittemetode som er veldig treg, men konvergent. For å forbedre dette har en ny akselerasjonsmetode har blitt utviklet. Denne anvendes som et postprosesseringssteg til den klassiske splittemetoden, og utnytter både overrelaksering og Anderson akselerasjon. Disse to forskjellige akselerasjonsmetodene har kompatible styrker i at overrelaksering akselererer når man er langt fra løsningen (som er tilfellet når sprekken propagerer), og Anderson akselerasjon fungerer bra når man er nærme løsningen. For å veksle mellom de to metodene har et kriterium basert på residualfeilen blitt brukt. Resultatet er en pålitelig akselerasjonsmetode som alltid akselererer og ofte er svært effektiv. Det siste modellen kalles Cahn-Larché ligningene og er også en fasefeltmodell, men denne beskriver elastisitet i et medium bestående av to elastiske materialer som kan bevege seg basert på overflatespenningen mellom dem. Dette problemet er spesielt utfordrende å løse da det verken er lineært eller konvekst. For å håndtere dette har en ny måte å behandle tidsavhengigheten til det underliggende koblede problemet på blitt utviklet. Dette leder til et diskret system som er ekvivalent med et konvekst minimeringsproblem, som derfor er velegnet til å løses med de fleste numeriske optimeringsmetoder, også splittemetoder. Den nye modellen som har blitt utviklet er en utvidelse av Cahn-Larché ligningene og har fått navnet Cahn-Hilliard-Biot. Dette er fordi ligningene utgjør en fasefelt modell som beskriver flyt i et deformerbart porøst medium med to poroelastiske materialer. Disse kan forflytte seg basert på overflatespenning, elastisk spenning, og poretrykk, og det er tenkt at modellen kan anvendes i forbindelse med kreftsvulstmodellering.There are many applications where the study of coupled physical processes is of great importance. These range from the life sciences with flow in deformable human tissue to structural engineering with fracture propagation in elastic solids. In this doctoral dissertation, there is a twofold focus on coupled problems. Firstly, robust and efficient solution strategies, with a focus on iterative decoupling methods, have been applied to several coupled systems of equations. Secondly, a new thermodynamically consistent coupled system of equations is proposed. Solution strategies are developed for three different coupled problems; the quasi-static linearized Biot equations that couples flow through porous materials and elastic deformation of the solid medium, variational phase-field models for brittle fracture that couple a phase-field equation for fracture evolution with linearized elasticity, and the Cahn-Larché equations that model elastic effects in a two-phase elastic material and couples an extended Cahn-Hilliard phase-field equation and linearized elasticity. Finally, the new system of equations that is proposed models flow through a two-phase deformable porous material where the solid phase evolution is governed by interfacial forces as well as effects from both the fluid and elastic properties of the material. In the work that concerns the quasi-static linearized Biot equations, the focus is on the fixed-stress splitting scheme, which is a popular method for sequentially solving the flow and elasticity subsystems of the full model. Using such a method is beneficial as it allows for the use of readily available solvers for the subproblems; however, a stabilizing term is required for the scheme to converge. It is well known that the convergence properties of the method strongly depend on how this term is chosen, and here, the optimal choice of it is addressed both theoretically and practically. An interval where the optimal stabilization parameter lies is provided, depending on the material parameters. In addition, two different ways of optimizing the parameter are proposed. The first is a brute-force method that relies on the mesh independence of the scheme's optimal stabilization parameter, and the second is valid for low-permeable media and utilizes an equivalence between the fixed-stress splitting scheme and the modified Richardson iteration. Regarding the variational phase-field model for brittle fracture propagation, the focus is on improving the convergence properties of the most commonly used solution strategy with an acceleration method. This solution strategy relies on a staggered scheme that alternates between solving the elasticity and phase-field subproblems in an iterative way. This is known to be a robust method compared to the monolithic Newton method. However, the staggered scheme often requires many iterations to converge to satisfactory precision. The contribution of this work is to accelerate the solver through a new acceleration method that combines Anderson acceleration and over-relaxation, dynamically switching back and forth between them depending on a criterion that takes the residual evolution into account. The acceleration scheme takes advantage of the strengths of both Anderson acceleration and over-relaxation, and the fact that they are complementary when applied to this problem, resulting in a significant speed-up of the convergence. Moreover, the method is applied as a post-processing technique to the increments of the solver, and can thus be implemented with minor modifications to readily available software. The final contribution toward solution strategies for coupled problems focuses on the Cahn-Larché equations. This is a model for linearized elasticity in a medium with two elastic phases that evolve with respect to interfacial forces and elastic effects. The system couples linearized elasticity and an extended Cahn-Hilliard phase-field equation. There are several challenging features with regards to solution strategies for this system including nonlinear coupling terms, and the fourth-order term that comes from the Cahn-Hilliard subsystem. Moreover, the system is nonlinear and non-convex with respect to both the phase-field and the displacement. In this work, a new semi-implicit time discretization that extends the standard convex-concave splitting method applied to the double-well potential from the Cahn-Hilliard subsystem is proposed. The extension includes special treatment for the elastic energy, and it is shown that the resulting discrete system is equivalent to a convex minimization problem. Furthermore, an alternating minimization solver is proposed for the fully discrete system, together with a convergence proof that includes convergence rates. Through numerical experiments, it becomes evident that the newly proposed discretization method leads to a system that is far better conditioned for linearization methods than standard time discretizations. Finally, a new model for flow through a two-phase deformable porous material is proposed. The two poroelastic phases have distinct material properties, and their interface evolves according to a generalized Ginzburg–Landau energy functional. As a result, a model that extends the Cahn-Larché equations to poroelasticity is proposed, and essential coupling terms for several applications are highlighted. These include solid tumor growth, biogrout, and wood growth. Moreover, the coupled set of equations is shown to be a generalized gradient flow. This implies that the system is thermodynamically consistent and makes a toolbox of analysis and solvers available for further study of the model.Doktorgradsavhandlin

    Adaptive Multirate Method for Coupled Parabolic and Elliptic Equations

    Get PDF
    In this thesis, motivated by the simulation of fuel cells and batteries, we develop an adaptive discretization algorithm to reduce the computational cost for solving the coupled parabolic/elliptic system. This system is the model for the electrochemical processes within the cathode of a solid oxide fuel cell (SOFC). First, the coupled system is discretized in time and in space by the Finite Element Method. Then, it is split into parabolic and elliptic sub-problems through an operator splitting method. These two equations are solved sequentially by the multirate iterative solving method that allows for different time step sizes for the temporal discretizations. The main focus of this work is to derive goal-oriented, a posteriori error estimators based on the Dual Weighted Residual method that are computable and separately assess the temporal discretization error, the spatial discretization error and the splitting error for each sub-problem. Instead of natural norms, the errors are measured in an arbitrary quantity of interest, as is often used in practical applications. The sub-problems are solved in temporal discretizations with different step lengths. If the ratio between the two step lengths is too large, this can result in the divergence of the coupling iteration within the multirate scheme. In this case, the algorithm uses the information from the splitting error estimator to control the convergence behavior. The error contributions of both discretizations and splitting method are balanced at the end of the refinement cycle that halts when the error estimators reach a desired accuracy. The described methods are validated on a simplified model that simulates the cathode of a SOFC. In this application, the parabolic part consists of a reaction-diffusion equation describing the concentration distribution of ions, and the elliptic part describes electrical potential. For a given accuracy, the adaptive algorithm finds the least required number of degrees of freedom of the parabolic and the elliptic parts of the system. Since the electrical potential equation has the faster time scale, we use the multirate method and see that the elliptic problem requires a smaller number of degrees of freedom to attain the same desired accuracy within the system. This significantly saves the total computational cost, since the elliptic equation in the coupled system is more expensive to solve. Therefore, this combination of the degrees of freedoms is optimal, in that it gives the least computational cost and the convergence within the algorithm

    A study of underbalanced drilling application for granite basements in Vietnam

    Get PDF
    Underbalanced drilling (UBD) has gained popularity during the recent years as it provides a method to prevent formation damage, minimize lost circulation risks, and increase the rate of penetration. However, drilling with a bottomhole pressure less than the formation pore pressure will often increase the risk of borehole instability due to the shear or compression failure of the rock adjacent to the wellbore. The extent of rock failure is related directly to the pressure in the annulus between the drillpipe, collars and the wellbore which can only be calculated through modelling multiphase flow in the drilling system. The relationship between rock failure and wellbore hydraulics becomes more complex due to the appearance of the influx formation fluid in UBD. Therefore, the aim of this research is to describe methods to solve the complex interaction of wellbore stability, rock yielding, collapse, wellbore hydraulics, and production capacity during UBD operations. To achieve the aim, analytical and numerical solutions have been codified into two programs WELLST, and UBDRILL. Commercial software packages such as ABAQUS, PERFORM, HYMOD were also used to model the process. Field data from granite basement reservoirs of Basin X, Vietnam were used as the parameters input into the model to calculate. This research includes: • An analysis of the influences of time dependence, thermal and hydraulic diffusivity, wellbore pressure changes, inclination and azimuth variation, poroelastic and thermo-poroelastic deformation, cooling and heating effects on wellbore stability in UBD. • An analysis of pressure, temperature, fluid properties distribution in the annulus and inside the drillpipe while UBD. • An analysis of the suggested liquid gas rate window (LGRW) which gives field engineers flexibility in the selection of liquid and gas injection rates on the drilling site when UBD is applied. • An estimation of production capacity in UBD operations. These results were obtained by analyzing the field data of granite basement formations and clastic formations of Basin X, Vietnam which is under compression in a strike-slip environment
    corecore