4,589 research outputs found

    ADAPTIVE SUBOPTIMAL CONTROL OF INPUT CONSTRAINED PLANTS

    Get PDF
    Abstract. This paper deals with adaptive regulation of a discrete-time linear time-invariant plant witharbitrary bounded disturbances whose control input is constrained to lie within certain limits. The adaptivecontrol algorithm exploits the one-step-ahead control strategy and the gradient projection type estimationprocedure using the modified dead zone. The convergence property of the estimation algorithm is shown tobe ensured. The sufficient conditions guaranteeing the global asymptotical stability and simultaneously thesuboptimality of the closed-loop systems are derived. Numerical examples and simulations are presented tosupport the theoretical results

    ADAPTIVE SUBOPTIMAL CONTROL OF INPUT CONSTRAINED PLANTS

    Get PDF
    This paper deals with adaptive regulation of a discrete-time linear time-invariant plant with arbitrary bounded disturbances whose control input is constrained to lie within certain limits. The adaptive control algorithm exploits the one-step-ahead control strategy and the gradient projection type estimation procedure using the modified dead zone. The convergence property of the estimation algorithm is shown to be ensured. The sufficient conditions guaranteeing the global asymptotical stability and simultaneously the suboptimality of the closed-loop systems are derived. Numerical examples and simulations are presented to support the theoretical result

    ADAPTIVE SUBOPTIMAL CONTROL OF INPUT CONSTRAINED PLANTS

    Get PDF
    Abstract. This paper deals with adaptive regulation of a discrete-time linear time-invariant plant witharbitrary bounded disturbances whose control input is constrained to lie within certain limits. The adaptivecontrol algorithm exploits the one-step-ahead control strategy and the gradient projection type estimationprocedure using the modified dead zone. The convergence property of the estimation algorithm is shown tobe ensured. The sufficient conditions guaranteeing the global asymptotical stability and simultaneously thesuboptimality of the closed-loop systems are derived. Numerical examples and simulations are presented tosupport the theoretical results

    ADAPTIVE SUBOPTIMAL CONTROL OF INPUT CONSTRAINED PLANTS

    Get PDF
    This paper deals with adaptive regulation of a discrete-time linear time-invariant plant with arbitrary bounded disturbances whose control input is constrained to lie within certain limits. The adaptive control algorithm exploits the one-step-ahead control strategy and the gradient projection type estimation procedure using the modified dead zone. The convergence property of the estimation algorithm is shown to be ensured. The sufficient conditions guaranteeing the global asymptotical stability and simultaneously the suboptimality of the closed-loop systems are derived. Numerical examples and simulations are presented to support the theoretical result

    Experimental Nonlinear Control for Flutter Suppression in a Nonlinear Aeroelastic System

    Get PDF
    Experimental implementation of input–output feedback linearization in controlling the dynamics of a nonlinear pitch–plunge aeroelastic system is presented. The control objective is to linearize the system dynamics and assign the poles of the pitch mode of the resulting linear system. The implementation 1) addresses experimentally the general case where feedback linearization-based control is applied using as the output a degree of freedom other than that where the physical nonlinearity is located, using a single trailing-edge control surface, to stabilize the entire system; 2) includes the unsteady effects of the airfoil’s aerodynamic behavior; 3) includes the embedding of a tuned numerical model of the aeroelastic system into the control scheme in real time; and 4) uses pole placement as the linear control objective, providing the user with flexibility in determining the nature of the controlled response. When implemented experimentally, the controller is capable of not only delaying the onset of limit-cycle oscillation but also successfully eliminating a previously established limit-cycle oscillation. The assignment of higher levels of damping results in notable reductions in limit-cycle oscillation decay times in the closed-loop response, indicating good controllability of the aeroelastic system and effectiveness of the pole-placement objective. The closed-loop response is further improved by incorporating adaptation so that assumed system parameters are updated with time. The use of an optimum adaptation parameter results in reduced response decay times

    Adaptive identification and control of structural dynamics systems using recursive lattice filters

    Get PDF
    A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center

    C-SIDE: The control-structure interaction demonstration experiment

    Get PDF
    The Control-Structure Interaction Demonstration Experiment (C-SIDE) is sponsored by the Electro-Optics and Cryogenics Division of Ball Aerospace Systems Group. Our objective is to demonstrate methods of solution to structure control problems utilizing currently available hardware in a system that is an extension of our corporate experience. The larger space structures with which Ball has been associated are the SEASAT radar antenna, Shuttle Imaging Radar (SIR) -A, -B and -C antennas and the Radarsat spacecraft. The motivation for the C-SIDE configuration is to show that integration of active figure control in the radar's system-level design can relieve antenna mechanical design constraints. This presentation is primarily an introduction to the C-SIDE testbed. Its physical and functional layouts, and major components are described. The sensor is of special interest as it enables direct surface figure measurements from a remote location. The Remote Attitude Measurement System (RAMS) makes high-rate, unobtrusive measurements of many locations, several of which may be collocated easily with actuators. The control processor is a 386/25 executing a reduced order model-based algorithm with provision for residual mode filters to compensate for structure interaction. The actuators for the ground demonstration are non-contacting, linear force devices. Results presented illustrate some basic characteristics of control-structure interaction with this hardware. The testbed will be used for evaluation of current technologies and for research in several areas. A brief indication of the evolution of the C-SIDE is given at the conclusion

    Performance-based control system design automation via evolutionary computing

    Get PDF
    This paper develops an evolutionary algorithm (EA) based methodology for computer-aided control system design (CACSD) automation in both the time and frequency domains under performance satisfactions. The approach is automated by efficient evolution from plant step response data, bypassing the system identification or linearization stage as required by conventional designs. Intelligently guided by the evolutionary optimization, control engineers are able to obtain a near-optimal ‘‘off-thecomputer’’ controller by feeding the developed CACSD system with plant I/O data and customer specifications without the need of a differentiable performance index. A speedup of near-linear pipelineability is also observed for the EA parallelism implemented on a network of transputers of Parsytec SuperCluster. Validation results against linear and nonlinear physical plants are convincing, with good closed-loop performance and robustness in the presence of practical constraints and perturbations

    Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks

    Full text link
    Closing feedback loops fast and over long distances is key to emerging applications; for example, robot motion control and swarm coordination require update intervals of tens of milliseconds. Low-power wireless technology is preferred for its low cost, small form factor, and flexibility, especially if the devices support multi-hop communication. So far, however, feedback control over wireless multi-hop networks has only been shown for update intervals on the order of seconds. This paper presents a wireless embedded system that tames imperfections impairing control performance (e.g., jitter and message loss), and a control design that exploits the essential properties of this system to provably guarantee closed-loop stability for physical processes with linear time-invariant dynamics. Using experiments on a cyber-physical testbed with 20 wireless nodes and multiple cart-pole systems, we are the first to demonstrate and evaluate feedback control and coordination over wireless multi-hop networks for update intervals of 20 to 50 milliseconds.Comment: Accepted final version to appear in: 10th ACM/IEEE International Conference on Cyber-Physical Systems (with CPS-IoT Week 2019) (ICCPS '19), April 16--18, 2019, Montreal, QC, Canad
    corecore