3,901 research outputs found

    Stability of impulsive infinite delay differential equations

    Get PDF
    AbstractIn this work, we consider the stability of impulsive infinite delay differential equations. By using Lyapunov functions and the Razumikhin technique, we get some results that are more general than ones given before. And in using the Razumikhin technique, we use a new technique that has been given by Shunian Zhang; we extend this technique to study impulsive systems. An example is also discussed in this work to illustrate the advantage of the results obtained

    On Asymptotic Stability of Stochastic Differential Equations with Delay in Infinite Dimensional Spaces

    Get PDF
    In most stochastic dynamical systems which describe process in engineering, physics and economics, stochastic components and random noise are often involved. Stochastic effects of these models are often used to capture the uncertainty about the operating systems. Motivated by the development of analysis and theory of stochastic processes, as well as the studies of natural sciences, the theory of stochastic differential equations in infinite dimensional spaces evolves gradually into a branch of modern analysis. In the analysis of such systems, we want to investigate their stabilities. This thesis is mainly concerned about the studies of the stability property of stochastic differential equations in infinite dimensional spaces, mainly in Hilbert spaces. Chapter 1 is an overview of the studies. In Chapter 2, we recall basic notations, definitions and preliminaries, especially those on stochastic integration and stochastic differential equations in infinite dimensional spaces. In this way, such notions as Q-Wiener processes, stochastic integrals, mild solutions will be reviewed. We also introduce the concepts of several types of stability. In Chapter 3, we are mainly concerned about the moment exponential stability of neutral impulsive stochastic delay partial differential equations with Poisson jumps. By employing the fixed point theorem, the p-th moment exponential stability of mild solutions to system is obtained. In Chapter 4, we firstly attempt to recall an impulsive-integral inequality by considering impulsive effects in stochastic systems. Then we define an attracting set and study the exponential stability of mild solutions to impulsive neutral stochastic delay partial differential equations with Poisson jumps by employing impulsive-integral inequality. Chapter 5 investigates p-th moment exponential stability and almost sure asymptotic stability of mild solutions to stochastic delay integro-differential equations. Finally in Chapter 6, we study the exponential stability of neutral impulsive stochastic delay partial differential equations driven by a fractional Brownian motion

    On the Practical Stability of Impulsive Differential Equations with Infinite Delay in Terms of Two Measures

    Get PDF
    We consider the practical stability of impulsive differential equations with infinite delay in terms of two measures. New stability criteria are established by employing Lyapunov functions and Razumikhin technique. Moreover, an example is given to illustrate the advantage of the obtained result

    Stability of stochastic differential equations in infinite dimensions

    Get PDF
    In engineering, physics and economics, many dynamical systems involving with stochastic components and random noise are often modeled by stochastic models. The stochastic effects of these models are often used to describe the uncertainty about the operating systems. Motivated by the development of analysis and theory of stochastic processes, as well as the studies of natural sciences, the theory of stochastic differential equations in infinite dimensional spaces evolves gradually into a branch of modern analysis. Many qualitative properties of such systems have been studied in the past few decades, among which, investigation of stability of such systems is often regarded as the first characteristic of the dynamical systems or models. In general, this thesis is mainly concerned with the studies of the stability property of stochastic differential equations in Hilbert spaces. Chapter 1 is an introduction to a brief history of stochastic differential equations in infinite dimensions, together with an overview of the studies. Chapter 2 is a presentation of preliminaries to some basic stochastic analysis. In Chapter 3, we study the stability in distribution of mild solutions to stochastic delay differential equations with Poisson jumps. Firstly, we use approximation of strong solutions to pass on the stability of strong solutions to the mild ones. Then, by constructing a suitable metric between the transition probability functions of mild solutions, we obtain the desired stability result under some suitable conditions. In Chapter 4, we investigate the stochastic partial delay differential equations with Markovian switching and Poisson jumps. By estimating the coefficients of energy equality, both the exponential stability and almost sure exponential stability of energy solutions to the equations are obtained. In Chapter 5, we study the relationship among strong, weak and mild solutions to the stochastic functional differential equations of neutral type. Finally, in Chapter 6, we study the asymptotic stability of two types of equations, impulsive stochastic delay differential equations with Poisson jumps and stochastic evolution equations with Poisson jumps. By employing the fixed point theorem, we derive the desired stability results under some criteria

    Stability analysis of impulsive stochastic Cohenā€“Grossberg neural networks with mixed time delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2008 Elsevier LtdIn this paper, the problem of stability analysis for a class of impulsive stochastic Cohenā€“Grossberg neural networks with mixed delays is considered. The mixed time delays comprise both the time-varying and infinite distributed delays. By employing a combination of the M-matrix theory and stochastic analysis technique, a sufficient condition is obtained to ensure the existence, uniqueness, and exponential p-stability of the equilibrium point for the addressed impulsive stochastic Cohenā€“Grossberg neural network with mixed delays. The proposed method, which does not make use of the Lyapunov functional, is shown to be simple yet effective for analyzing the stability of impulsive or stochastic neural networks with variable and/or distributed delays. We then extend our main results to the case where the parameters contain interval uncertainties. Moreover, the exponential convergence rate index is estimated, which depends on the system parameters. An example is given to show the effectiveness of the obtained results.This work was supported by the Natural Science Foundation of CQ CSTC under grant 2007BB0430, the Scientific Research Fund of Chongqing Municipal Education Commission under Grant KJ070401, an International Joint Project sponsored by the Royal Society of the UK and the National Natural Science Foundation of China, and the Alexander von Humboldt Foundation of Germany
    • ā€¦
    corecore