5,781 research outputs found

    Modeling and Optimal Design of Machining-Induced Residual Stresses in Aluminium Alloys Using a Fast Hierarchical Multiobjective Optimization Algorithm

    Get PDF
    The residual stresses induced during shaping and machining play an important role in determining the integrity and durability of metal components. An important issue of producing safety critical components is to find the machining parameters that create compressive surface stresses or minimise tensile surface stresses. In this paper, a systematic data-driven fuzzy modelling methodology is proposed, which allows constructing transparent fuzzy models considering both accuracy and interpretability attributes of fuzzy systems. The new method employs a hierarchical optimisation structure to improve the modelling efficiency, where two learning mechanisms cooperate together: NSGA-II is used to improve the modelā€™s structure while the gradient descent method is used to optimise the numerical parameters. This hybrid approach is then successfully applied to the problem that concerns the prediction of machining induced residual stresses in aerospace aluminium alloys. Based on the developed reliable prediction models, NSGA-II is further applied to the multi-objective optimal design of aluminium alloys in a ā€˜reverse-engineeringā€™ fashion. It is revealed that the optimal machining regimes to minimise the residual stress and the machining cost simultaneously can be successfully located

    Making the Power Grid More Intelligent

    Get PDF
    Summary form only given. This paper focuses on the applications of intelligent techniques for improving the performances of the power system controllers. Intelligent control techniques lay the foundation of the next generation of nonlinear controllers and have the advantage of further improving the controller\u27s performance by incorporating heuristics and expert knowledge into its design. Most of these techniques are independent of any mathematical model of the power system, which proves to be a considerable advantage

    Intelligent Local and Hierarchical Control of FACTS Devices

    Get PDF
    This paper presents an overview of the applications of intelligent control techniques on local and hierarchical control of FACTS devices. These control techniques are superior to the conventional linear/nonlinear control schemes in the sense that they are independent of any mathematical model of the power system to be controlled. In addition, they do not depend on the operating conditions and the configuration of the system to which the FACTS device is connected. A static compensator (STATCOM) is used as the example in order to compare the performances of the proposed intelligent controllers with those of their linear counterparts. Nevertheless, the ideas put forth in this paper are applicable to other shunt or series FACTS devices as well. Two different control schemes are evaluated: a fuzzy logic based local controller and a neuro-fuzzy hierarchical controller for a STATCOM in a multimachine power system

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work
    • ā€¦
    corecore