33,558 research outputs found

    A reaction diffusion-like formalism for plastic neural networks reveals dissipative solitons at criticality

    Get PDF
    Self-organized structures in networks with spike-timing dependent plasticity (STDP) are likely to play a central role for information processing in the brain. In the present study we derive a reaction-diffusion-like formalism for plastic feed-forward networks of nonlinear rate neurons with a correlation sensitive learning rule inspired by and being qualitatively similar to STDP. After obtaining equations that describe the change of the spatial shape of the signal from layer to layer, we derive a criterion for the non-linearity necessary to obtain stable dynamics for arbitrary input. We classify the possible scenarios of signal evolution and find that close to the transition to the unstable regime meta-stable solutions appear. The form of these dissipative solitons is determined analytically and the evolution and interaction of several such coexistent objects is investigated

    A simple scalar coupled map lattice model for excitable media

    Get PDF
    A simple scalar coupled map lattice model for excitable media is intensively analysed in this paper. This model is used to explain the excitability of excitable media, and a Hopf-like bifurcation is employed to study the different spatio-temporal patterns produced by the model. Several basic rules for the construction of these kinds of models are proposed. Illustrative examples demonstrate that the sCML model is capable of generating complex spatiotemporal patterns

    New results on finite-/fixed-time synchronization of delayed memristive neural networks with diffusion effects

    Get PDF
    In this paper, we further investigate the finite-/fixed-time synchronization (FFTS) problem for a class of delayed memristive reaction-diffusion neural networks (MRDNNs). By utilizing the state-feedback control techniques, and constructing a general Lyapunov functional, with the help of inequality techniques and the finite-time stability theory, novel criteria are established to realize the FFTS of the considered delayed MRDNNs, which generalize and complement previously known results. Finally, a numerical example is provided to support the obtained theoretical results

    Stochastic neural field theory and the system-size expansion

    Get PDF
    We analyze a master equation formulation of stochastic neurodynamics for a network of synaptically coupled homogeneous neuronal populations each consisting of N identical neurons. The state of the network is specified by the fraction of active or spiking neurons in each population, and transition rates are chosen so that in the thermodynamic or deterministic limit (N → ∞) we recover standard activity–based or voltage–based rate models. We derive the lowest order corrections to these rate equations for large but finite N using two different approximation schemes, one based on the Van Kampen system-size expansion and the other based on path integral methods. Both methods yield the same series expansion of the moment equations, which at O(1/N ) can be truncated to form a closed system of equations for the first and second order moments. Taking a continuum limit of the moment equations whilst keeping the system size N fixed generates a system of integrodifferential equations for the mean and covariance of the corresponding stochastic neural field model. We also show how the path integral approach can be used to study large deviation or rare event statistics underlying escape from the basin of attraction of a stable fixed point of the mean–field dynamics; such an analysis is not possible using the system-size expansion since the latter cannot accurately\ud determine exponentially small transitions
    • …
    corecore