1,354 research outputs found

    Multi-Parametric Extremum Seeking-based Auto-Tuning for Robust Input-Output Linearization Control

    Full text link
    We study in this paper the problem of iterative feedback gains tuning for a class of nonlinear systems. We consider Input-Output linearizable nonlinear systems with additive uncertainties. We first design a nominal Input-Output linearization-based controller that ensures global uniform boundedness of the output tracking error dynamics. Then, we complement the robust controller with a model-free multi-parametric extremum seeking (MES) control to iteratively auto-tune the feedback gains. We analyze the stability of the whole controller, i.e. robust nonlinear controller plus model-free learning algorithm. We use numerical tests to demonstrate the performance of this method on a mechatronics example.Comment: To appear at the IEEE CDC 201

    On a class of generating vector fields for the extremum seeking problem: Lie bracket approximation and stability properties

    Get PDF
    In this paper, we describe a broad class of control functions for extremum seeking problems. We show that it unifies and generalizes existing extremum seeking strategies which are based on Lie bracket approximations, and allows to design new controls with favorable properties in extremum seeking and vibrational stabilization tasks. The second result of this paper is a novel approach for studying the asymptotic behavior of extremum seeking systems. It provides a constructive procedure for defining frequencies of control functions to ensure the practical asymptotic and exponential stability. In contrast to many known results, we also prove asymptotic and exponential stability in the sense of Lyapunov for the proposed class of extremum seeking systems under appropriate assumptions on the vector fields

    Partial Stability Concept in Extremum Seeking Problems

    No full text
    The paper deals with the extremum seeking problem for a class of cost functions depending only on a part of state variables of a control system. This problem is related to the concept of partial asymptotic stability and analyzed by Lyapunov's direct method and averaging schemes. Sufficient conditions for the practical partial stability of a system with oscillating inputs are derived with the use of Lie bracket approximation techniques. These conditions are exploited to describe a broad class of extremum-seeking controllers ensuring the partial stability of the set of minima of a cost function. The obtained theoretical results are illustrated by the Brockett integrator and rotating rigid body.Comment: This is the author's version of the manuscript accepted for publication in the Proceedings of the Joint 8th IFAC Symposium on Mechatronic Systems and 11th IFAC Symposium on Nonlinear Control Systems (MECHATRONICS & NOLCOS 2019
    • …
    corecore