1,712 research outputs found

    Stability of a stochastically perturbed model of intracellular single-stranded RNA virus replication

    Full text link
    Replication of single-stranded RNA virus can be complicated, compared to that of double-stranded virus, as it require production of intermediate antigenomic strands that then serve as template for the genomic-sense strands. Moreover, for ssRNA viruses, there is a variability of the molecular mechanism by which genomic strands can be replicated. A combination of such mechanisms can also occur: a fraction of the produced progeny may result from a stamping-machine type of replication that uses the parental genome as template, whereas others may result from the replication of progeny genomes. F. Mart\'{\i}nez et al. and J. Sardany\'{e}s at al. suggested a deterministic ssRNA virus intracellular replication model that allows for the variability in the replication mechanisms. To explore how stochasticity can affect this model principal properties, in this paper we consider the stability of a stochastically perturbed model of ssRNA virus replication within a cell. Using the direct Lyapunov method, we found sufficient conditions for the stability in probability of equilibrium states for this model. This result confirms that this heterogeneous model of single-stranded RNA virus replication is stable with respect to stochastic perturbations of the environment

    On the robustness of learning in games with stochastically perturbed payoff observations

    Get PDF
    Motivated by the scarcity of accurate payoff feedback in practical applications of game theory, we examine a class of learning dynamics where players adjust their choices based on past payoff observations that are subject to noise and random disturbances. First, in the single-player case (corresponding to an agent trying to adapt to an arbitrarily changing environment), we show that the stochastic dynamics under study lead to no regret almost surely, irrespective of the noise level in the player's observations. In the multi-player case, we find that dominated strategies become extinct and we show that strict Nash equilibria are stochastically stable and attracting; conversely, if a state is stable or attracting with positive probability, then it is a Nash equilibrium. Finally, we provide an averaging principle for 2-player games, and we show that in zero-sum games with an interior equilibrium, time averages converge to Nash equilibrium for any noise level.Comment: 36 pages, 4 figure

    Imitation Dynamics with Payoff Shocks

    Get PDF
    We investigate the impact of payoff shocks on the evolution of large populations of myopic players that employ simple strategy revision protocols such as the "imitation of success". In the noiseless case, this process is governed by the standard (deterministic) replicator dynamics; in the presence of noise however, the induced stochastic dynamics are different from previous versions of the stochastic replicator dynamics (such as the aggregate-shocks model of Fudenberg and Harris, 1992). In this context, we show that strict equilibria are always stochastically asymptotically stable, irrespective of the magnitude of the shocks; on the other hand, in the high-noise regime, non-equilibrium states may also become stochastically asymptotically stable and dominated strategies may survive in perpetuity (they become extinct if the noise is low). Such behavior is eliminated if players are less myopic and revise their strategies based on their cumulative payoffs. In this case, we obtain a second order stochastic dynamical system whose attracting states coincide with the game's strict equilibria and where dominated strategies become extinct (a.s.), no matter the noise level.Comment: 25 page

    Evolution of opinions on social networks in the presence of competing committed groups

    Get PDF
    Public opinion is often affected by the presence of committed groups of individuals dedicated to competing points of view. Using a model of pairwise social influence, we study how the presence of such groups within social networks affects the outcome and the speed of evolution of the overall opinion on the network. Earlier work indicated that a single committed group within a dense social network can cause the entire network to quickly adopt the group's opinion (in times scaling logarithmically with the network size), so long as the committed group constitutes more than about 10% of the population (with the findings being qualitatively similar for sparse networks as well). Here we study the more general case of opinion evolution when two groups committed to distinct, competing opinions AA and BB, and constituting fractions pAp_A and pBp_B of the total population respectively, are present in the network. We show for stylized social networks (including Erd\H{o}s-R\'enyi random graphs and Barab\'asi-Albert scale-free networks) that the phase diagram of this system in parameter space (pA,pB)(p_A,p_B) consists of two regions, one where two stable steady-states coexist, and the remaining where only a single stable steady-state exists. These two regions are separated by two fold-bifurcation (spinodal) lines which meet tangentially and terminate at a cusp (critical point). We provide further insights to the phase diagram and to the nature of the underlying phase transitions by investigating the model on infinite (mean-field limit), finite complete graphs and finite sparse networks. For the latter case, we also derive the scaling exponent associated with the exponential growth of switching times as a function of the distance from the critical point.Comment: 23 pages: 15 pages + 7 figures (main text), 8 pages + 1 figure + 1 table (supplementary info

    Ruelle-Pollicott Resonances of Stochastic Systems in Reduced State Space. Part II: Stochastic Hopf Bifurcation

    Get PDF
    The spectrum of the generator (Kolmogorov operator) of a diffusion process, referred to as the Ruelle-Pollicott (RP) spectrum, provides a detailed characterization of correlation functions and power spectra of stochastic systems via decomposition formulas in terms of RP resonances. Stochastic analysis techniques relying on the theory of Markov semigroups for the study of the RP spectrum and a rigorous reduction method is presented in Part I. This framework is here applied to study a stochastic Hopf bifurcation in view of characterizing the statistical properties of nonlinear oscillators perturbed by noise, depending on their stability. In light of the H\"ormander theorem, it is first shown that the geometry of the unperturbed limit cycle, in particular its isochrons, is essential to understand the effect of noise and the phenomenon of phase diffusion. In addition, it is shown that the spectrum has a spectral gap, even at the bifurcation point, and that correlations decay exponentially fast. Explicit small-noise expansions of the RP eigenvalues and eigenfunctions are then obtained, away from the bifurcation point, based on the knowledge of the linearized deterministic dynamics and the characteristics of the noise. These formulas allow one to understand how the interaction of the noise with the deterministic dynamics affect the decay of correlations. Numerical results complement the study of the RP spectrum at the bifurcation, revealing useful scaling laws. The analysis of the Markov semigroup for stochastic bifurcations is thus promising in providing a complementary approach to the more geometric random dynamical system approach. This approach is not limited to low-dimensional systems and the reduction method presented in part I is applied to a stochastic model relevant to climate dynamics in part III

    Sequential escapes: onset of slow domino regime via a saddle connection

    Get PDF
    We explore sequential escape behaviour of coupled bistable systems under the influence of stochastic perturbations. We consider transient escapes from a marginally stable "quiescent" equilibrium to a more stable "active" equilibrium. The presence of coupling introduces dependence between the escape processes: for diffusive coupling there is a strongly coupled limit (fast domino regime) where the escapes are strongly synchronised while for intermediate coupling (slow domino regime) without partially escaped stable states, there is still a delayed effect. These regimes can be associated with bifurcations of equilibria in the low-noise limit. In this paper we consider a localized form of non-diffusive (i.e pulse-like) coupling and find similar changes in the distribution of escape times with coupling strength. However we find transition to a slow domino regime that is not associated with any bifurcations of equilibria. We show that this transition can be understood as a codimension-one saddle connection bifurcation for the low-noise limit. At transition, the most likely escape path from one attractor hits the escape saddle from the basin of another partially escaped attractor. After this bifurcation we find increasing coefficient of variation of the subsequent escape times

    Climate dynamics and fluid mechanics: Natural variability and related uncertainties

    Full text link
    The purpose of this review-and-research paper is twofold: (i) to review the role played in climate dynamics by fluid-dynamical models; and (ii) to contribute to the understanding and reduction of the uncertainties in future climate-change projections. To illustrate the first point, we focus on the large-scale, wind-driven flow of the mid-latitude oceans which contribute in a crucial way to Earth's climate, and to changes therein. We study the low-frequency variability (LFV) of the wind-driven, double-gyre circulation in mid-latitude ocean basins, via the bifurcation sequence that leads from steady states through periodic solutions and on to the chaotic, irregular flows documented in the observations. This sequence involves local, pitchfork and Hopf bifurcations, as well as global, homoclinic ones. The natural climate variability induced by the LFV of the ocean circulation is but one of the causes of uncertainties in climate projections. Another major cause of such uncertainties could reside in the structural instability in the topological sense, of the equations governing climate dynamics, including but not restricted to those of atmospheric and ocean dynamics. We propose a novel approach to understand, and possibly reduce, these uncertainties, based on the concepts and methods of random dynamical systems theory. As a very first step, we study the effect of noise on the topological classes of the Arnol'd family of circle maps, a paradigmatic model of frequency locking as occurring in the nonlinear interactions between the El Nino-Southern Oscillations (ENSO) and the seasonal cycle. It is shown that the maps' fine-grained resonant landscape is smoothed by the noise, thus permitting their coarse-grained classification. This result is consistent with stabilizing effects of stochastic parametrization obtained in modeling of ENSO phenomenon via some general circulation models.Comment: Invited survey paper for Special Issue on The Euler Equations: 250 Years On, in Physica D: Nonlinear phenomen
    corecore