1,850 research outputs found

    Empowering Optimal Control with Machine Learning: A Perspective from Model Predictive Control

    Full text link
    Solving complex optimal control problems have confronted computational challenges for a long time. Recent advances in machine learning have provided us with new opportunities to address these challenges. This paper takes model predictive control, a popular optimal control method, as the primary example to survey recent progress that leverages machine learning techniques to empower optimal control solvers. We also discuss some of the main challenges encountered when applying machine learning to develop more robust optimal control algorithms

    Adaptive dynamic programming with eligibility traces and complexity reduction of high-dimensional systems

    Get PDF
    This dissertation investigates the application of a variety of computational intelligence techniques, particularly clustering and adaptive dynamic programming (ADP) designs especially heuristic dynamic programming (HDP) and dual heuristic programming (DHP). Moreover, a one-step temporal-difference (TD(0)) and n-step TD (TD(λ)) with their gradients are utilized as learning algorithms to train and online-adapt the families of ADP. The dissertation is organized into seven papers. The first paper demonstrates the robustness of model order reduction (MOR) for simulating complex dynamical systems. Agglomerative hierarchical clustering based on performance evaluation is introduced for MOR. This method computes the reduced order denominator of the transfer function by clustering system poles in a hierarchical dendrogram. Several numerical examples of reducing techniques are taken from the literature to compare with our work. In the second paper, a HDP is combined with the Dyna algorithm for path planning. The third paper uses DHP with an eligibility trace parameter (λ) to track a reference trajectory under uncertainties for a nonholonomic mobile robot by using a first-order Sugeno fuzzy neural network structure for the critic and actor networks. In the fourth and fifth papers, a stability analysis for a model-free action-dependent HDP(λ) is demonstrated with batch- and online-implementation learning, respectively. The sixth work combines two different gradient prediction levels of critic networks. In this work, we provide a convergence proofs. The seventh paper develops a two-hybrid recurrent fuzzy neural network structures for both critic and actor networks. They use a novel n-step gradient temporal-difference (gradient of TD(λ)) of an advanced ADP algorithm called value-gradient learning (VGL(λ)), and convergence proofs are given. Furthermore, the seventh paper is the first to combine the single network adaptive critic with VGL(λ). --Abstract, page iv

    Intelligent Learning Control System Design Based on Adaptive Dynamic Programming

    Get PDF
    Adaptive dynamic programming (ADP) controller is a powerful neural network based control technique that has been investigated, designed, and tested in a wide range of applications for solving optimal control problems in complex systems. The performance of ADP controller is usually obtained by long training periods because the data usage efficiency is low as it discards the samples once used. Experience replay is a powerful technique showing potential to accelerate the training process of learning and control. However, its existing design can not be directly used for model-free ADP design, because it focuses on the forward temporal difference (TD) information (e.g., state-action pair) between the current time step and the future time step, and will need a model network for future information prediction. Uniform random sampling again used for experience replay, is not an efficient technique to learn. Prioritized experience replay (PER) presents important transitions more frequently and has proven to be efficient in the learning process. In order to solve long training periods of ADP controller, the first goal of this thesis is to avoid the usage of model network or identifier of the system. Specifically, the experience tuple is designed with one step backward state-action information and the TD can be achieved by a previous time step and a current time step. The proposed approach is tested for two case studies: cart-pole and triple-link pendulum balancing tasks. The proposed approach improved the required average trial to succeed by 26.5% for cart-pole and 43% for triple-link. The second goal of this thesis is to integrate the efficient learning capability of PER into ADP. The detailed theoretical analysis is presented in order to verify the stability of the proposed control technique. The proposed approach improved the required average trial to succeed compared to traditional ADP controller by 60.56% for cart-pole and 56.89% for triple-link balancing tasks. The final goal of this thesis is to validate ADP controller in smart grid to improve current control performance of virtual synchronous machine (VSM) at sudden load changes and a single line to ground fault and reduce harmonics in shunt active filters (SAF) during different loading conditions. The ADP controller produced the fastest response time, low overshoot and in general, the best performance in comparison to the traditional current controller. In SAF, ADP controller reduced total harmonic distortion (THD) of the source current by an average of 18.41% compared to a traditional current controller alone

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms
    corecore