52 research outputs found

    Ionic parameters identification of an inverse problem of strongly coupled PDE's system in cardiac electrophysiology using Carleman estimates

    Get PDF
    International audienceIn this paper, we consider an inverse problem of determining multiple ionic parameters of a 2 × 2 strongly coupled parabolic-elliptic reaction-diffusion system arising in cardiac electrophysiology modelling. We use the bidomain model coupled to an ODE system and we consider a general formalism of physiologicaly-detailed cellular membrane models to describe the ionic exchanges at the microscopic level. Our main result is the uniqueness and a Lipschitz stability estimate of the ion channels con-ductance parameters of the model using subboundary observations over an interval of time. The key ingredients are a global Carleman-type estimate with a suitable observations acting on a part of the boundary

    Three-dimensional Multiscale Modelling and Simulation of Atria and Torso Electrophysiology

    Full text link
    A better understanding of the electrical activity of the heart under physiological and pathological conditions has always been key for clinicians and researchers. Over the last years, the information in the P-wave signals has been extensively analysed to un-cover the mechanisms underlying atrial arrhythmias by localizing ectopic foci or high-frequency rotors. However, the relationship between the activation of the different areas of the atria and the characteristics of the P-wave signals or body surface poten-tial maps are still far from being completely understood. Multiscale anatomical and functional models of the heart are a new technological framework that can enable the investigation of the heart as a complex system. This thesis is centred in the construction of a multiscale framework that allows the realistic simulation of atrial and torso electrophysiology and integrates all the anatom-ical and functional descriptions described in the literature. The construction of such model involves the development of heterogeneous cellular and tissue electrophysiolo-gy models fitted to empirical data. It also requires an accurate 3D representation of the atrial anatomy, including tissue fibre arrangement, and preferential conduction axes. This multiscale model aims to reproduce faithfully the activation of the atria under physiological and pathological conditions. We use the model for two main applica-tions. First, to study the relationship between atrial activation and surface signals in sinus rhythm. This study should reveal the best places for recording P-waves signals in the torso, and which are the regions of the atria that make the most significant contri-bution to the body surface potential maps and determine the main P-wave characteris-tics. Second, to spatially cluster and classify ectopic atrial foci into clearly differenti-ated atrial regions by using the body surface P-wave integral map (BSPiM) as a bi-omarker. We develop a machine-learning pipeline trained from simulations obtained from the atria-torso model aiming to validate whether ectopic foci with similar BSPiM naturally cluster into differentiated non-intersected atrial regions, and whether new BSPiM could be correctly classified with high accuracy.En la actualidad, una mejor compresión de la actividad eléctrica del corazón en condi-ciones fisiológicas y patológicas es clave para médicos e investigadores. A lo largo de los últimos años, la información derivada de la onda P se ha utilizado para intentar descubrir los mecanismos subyacentes a las arritmias auriculares mediante la localiza-ción de focos ectópicos y rotores de alta frecuencia. Sin embargo, la relación entre la activación de distintas regiones auriculares y las características tanto de las ondas P como de la distribución de potencial en la superficie del torso está lejos de entenderse completamente. Los modelos cardíacos funcionales y anatómicos son una nueva he-rramienta que puede facilitar la investigación relativa al corazón entendido como sis-tema complejo. La presente tesis se centra en la construcción de un modelo multiescala para la simula-ción realista de la electrofisiología cardíaca tanto a nivel auricular como de torso, integrando toda la información anatómica y funcional disponible en la literatura. La construcción de este modelo implica el desarrollo, en base a datos experimentales, de modelos electrofisiológicos heterogéneos tanto celulares como tisulares. Así mismo, es imprescindible una representación tridimensional precisa de la anatomía auricular, incluyendo la dirección de fibras y los haces de conducción preferentes. Este modelo multiescala busca reproducir fielmente la activación auricular en condiciones fisiológi-cas y patológicas. Su uso se ha centrado fundamentalmente en dos aplicaciones. En primer lugar, estudiar la relación entre la activación auricular en ritmo sinusal y las señales en la superficie del torso. Este estudio busca definir la mejor ubicación para el registro de las ondas P en el torso así como determinar aquellas regiones auriculares que contribuyen fundamentalmente a la formación y distribución de potenciales super-ficiales así como a las características de las ondas P. En segundo lugar, agrupar y cla-sificar espacialmente los focos ectópicos en regiones auriculares claramente diferen-ciables empleando como biomarcador los mapas superficiales de integral de la onda P (BSPiM). Se ha desarrollado para ello una metodología de aprendizaje automático en la que las simulaciones obtenidas con el modelo multiescala aurícula-torso sirven de entrenamiento, permitiendo validar si los focos ectópicos cuyos BSPiMs son similares se agrupan de forma natural en regiones auriculares no intersectadas y si BSPiMs nue-vos podrían ser clasificados prospectivamente con gran precisión.Avui en dia, una millor comprenssió de l'activitat elèctrica del cor en condicions fisio-lògiques i patològiques és clau per a metges i investigadors. Al llarg dels últims anys, la informació derivada de l'ona P s'ha utilitzat per intentar descobrir els mecanismes subjacents a les arítmies auriculars mitjançant la localització de focus ectòpics i rotors d'alta freqüència. No obstant això, la relació entre l'activació de diferents regions auri-culars i les característiques tant de les ones P com de la distribució de potencial en la superfície del tors està lluny d'entendre's completament. Els models cardíacs funcionals i anatòmics són una nova eina que pot facilitar la recerca relativa al cor entès com a sistema complex. La present tesi es centra en la construcció d'un model multiescala per a la simulació realista de la electrofisiologia cardíaca tant a nivell auricular com de tors, integrant tota la informació anatòmica i funcional disponible en la literatura. La construcció d'aquest model implica el desenvolupament, sobre la base de dades experimentals, de models electrofisiològics heterogenis, tant cel·lulars com tissulars. Així mateix, és imprescindible una representació tridimensional precisa de l'anatomia auricular, in-cloent la direcció de fibres i els feixos de conducció preferents. Aquest model multies-cala busca reproduir fidelment l'activació auricular en condicions fisiològiques i pa-tològiques. El seu ús s'ha centrat fonamentalment en dues aplicacions. En primer lloc, estudiar la relació entre l'activació auricular en ritme sinusal i els senyals en la superfí-cie del tors. A més a més, amb aquest estudi també es busca definir la millor ubicació per al registre de les ones P en el tors, així com, determinar aquelles regions auriculars que contribueixen fonamentalment a la formació i distribució de potencials superfi-cials a l'hora que es caracteritzen les ones P. En segon lloc, agrupar i classificar espa-cialment els focus ectòpics en regions auriculars clarament diferenciables emprant com a biomarcador els mapes superficials d'integral de l'ona P (BSPiM). És per això que s'ha desenvolupat una metodologia d'aprenentatge automàtic en la qual les simulacions obtingudes amb el model multiescala aurícula-tors serveixen d'entrenament, la qual cosa permet validar si els focus ectòpics, llurs BSPiMs són similars, s'agrupen de for-ma natural en regions auriculars no intersectades i si BSPiMs nous podrien ser classifi-cats de manera prospectiva amb precisió.Ferrer Albero, A. (2017). Three-dimensional Multiscale Modelling and Simulation of Atria and Torso Electrophysiology [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/88402TESI

    Reaction-Diffusion systems for the macroscopic Bidomain model of the cardiac electric field

    Get PDF
    The paper deals with a mathematical model for the electric activity of the heart at macroscopic level. The membrane model used to describe the ionic currents is a generalization of the phase-I Luo-Rudy, a model widely used in 2-D and 3-D simulations of the action potential propagation. From the mathematical viewpoint the model is made up of a degenerate parabolic reaction diffusion system coupled with an ODE system. We derive existence, uniqueness and some regularity results

    Identification of weakly coupled multiphysics problems. Application to the inverse problem of electrocardiography

    Get PDF
    This work addresses the inverse problem of electrocardiography from a new perspective, by combining electrical and mechanical measurements. Our strategy relies on the defini-tion of a model of the electromechanical contraction which is registered on ECG data but also on measured mechanical displacements of the heart tissue typically extracted from medical images. In this respect, we establish in this work the convergence of a sequential estimator which combines for such coupled problems various state of the art sequential data assimilation methods in a unified consistent and efficient framework. Indeed we ag-gregate a Luenberger observer for the mechanical state and a Reduced Order Unscented Kalman Filter applied on the parameters to be identified and a POD projection of the electrical state. Then using synthetic data we show the benefits of our approach for the estimation of the electrical state of the ventricles along the heart beat compared with more classical strategies which only consider an electrophysiological model with ECG measurements. Our numerical results actually show that the mechanical measurements improve the identifiability of the electrical problem allowing to reconstruct the electrical state of the coupled system more precisely. Therefore, this work is intended to be a first proof of concept, with theoretical justifications and numerical investigations, of the ad-vantage of using available multi-modal observations for the estimation and identification of an electromechanical model of the heart

    Integrated Heart - Coupling multiscale and multiphysics models for the simulation of the cardiac function

    Get PDF
    Mathematical modelling of the human heart and its function can expand our understanding of various cardiac diseases, which remain the most common cause of death in the developed world. Like other physiological systems, the heart can be understood as a complex multiscale system involving interacting phenomena at the molecular, cellular, tissue, and organ levels. This article addresses the numerical modelling of many aspects of heart function, including the interaction of the cardiac electrophysiology system with contractile muscle tissue, the sub-cellular activation-contraction mechanisms, as well as the hemodynamics inside the heart chambers. Resolution of each of these sub-systems requires separate mathematical analysis and specially developed numerical algorithms, which we review in detail. By using specific sub-systems as examples, we also look at systemic stability, and explain for example how physiological concepts such as microscopic force generation in cardiac muscle cells, translate to coupled systems of differential equations, and how their stability properties influence the choice of numerical coupling algorithms. Several numerical examples illustrate three fundamental challenges of developing multiphysics and multiscale numerical models for simulating heart function, namely: (i) the correct upscaling from single-cell models to the entire cardiac muscle, (ii) the proper coupling of electrophysiology and tissue mechanics to simulate electromechanical feedback, and (iii) the stable simulation of ventricular hemodynamics during rapid valve opening and closure
    corecore