1,343 research outputs found

    Graphs having no quantum symmetry

    Get PDF
    We consider circulant graphs having pp vertices, with pp prime. To any such graph we associate a certain number kk, that we call type of the graph. We prove that for p>>kp>>k the graph has no quantum symmetry, in the sense that the quantum automorphism group reduces to the classical automorphism group.Comment: 14 page

    Boolean networks synchronism sensitivity and XOR circulant networks convergence time

    Full text link
    In this paper are presented first results of a theoretical study on the role of non-monotone interactions in Boolean automata networks. We propose to analyse the contribution of non-monotony to the diversity and complexity in their dynamical behaviours according to two axes. The first one consists in supporting the idea that non-monotony has a peculiar influence on the sensitivity to synchronism of such networks. It leads us to the second axis that presents preliminary results and builds an understanding of the dynamical behaviours, in particular concerning convergence times, of specific non-monotone Boolean automata networks called XOR circulant networks.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249

    P-matrices and signed digraphs

    Get PDF
    We associate a signed digraph with a list of matrices whose dimensions permit them to be multiplied, and whose product is square. Cycles in this graph have a parity, that is, they are either even (termed e-cycles) or odd (termed o-cycles). The absence of e-cycles in the graph is shown to imply that the matrix product is a P0-matrix, i.e., all of its principal minors are nonnegative. Conversely, the presence of an e-cycle is shown to imply that there exists a list of matrices associated with the graph whose product fails to be a P0-matrix. The results generalise a number of previous results relating P- and P0-matrices to graphs

    The modeling of diffuse boundaries in the 2-D digital waveguide mesh

    Get PDF
    The digital waveguide mesh can be used to simulate the propagation of sound waves in an acoustic system. The accurate simulation of the acoustic characteristics of boundaries within such a system is an important part of the model. One significant property of an acoustic boundary is its diffusivity. Previous approaches to simulating diffuse boundaries in a digital waveguide mesh are effective but exhibit limitations and have not been analyzed in detail. An improved technique is presented here that simulates diffusion at boundaries and offers a high degree of control and consistency. This technique works by rotating wavefronts as they pass through a special diffusing layer adjacent to the boundary. The waves are rotated randomly according to a chosen probability function and the model is lossless. This diffusion model is analyzed in detail, and its diffusivity is quantified in the form of frequency dependent diffusion coefficients. The approach used to measuring boundary diffusion is described here in detail for the 2-D digital waveguide mesh and can readily be extended for the 3-D case
    • …
    corecore