37,267 research outputs found

    Linear Convergence of Comparison-based Step-size Adaptive Randomized Search via Stability of Markov Chains

    Get PDF
    In this paper, we consider comparison-based adaptive stochastic algorithms for solving numerical optimisation problems. We consider a specific subclass of algorithms that we call comparison-based step-size adaptive randomized search (CB-SARS), where the state variables at a given iteration are a vector of the search space and a positive parameter, the step-size, typically controlling the overall standard deviation of the underlying search distribution.We investigate the linear convergence of CB-SARS on\emph{scaling-invariant} objective functions. Scaling-invariantfunctions preserve the ordering of points with respect to their functionvalue when the points are scaled with the same positive parameter (thescaling is done w.r.t. a fixed reference point). This class offunctions includes norms composed with strictly increasing functions aswell as many non quasi-convex and non-continuousfunctions. On scaling-invariant functions, we show the existence of ahomogeneous Markov chain, as a consequence of natural invarianceproperties of CB-SARS (essentially scale-invariance and invariance tostrictly increasing transformation of the objective function). We thenderive sufficient conditions for \emph{global linear convergence} ofCB-SARS, expressed in terms of different stability conditions of thenormalised homogeneous Markov chain (irreducibility, positivity, Harrisrecurrence, geometric ergodicity) and thus define a general methodologyfor proving global linear convergence of CB-SARS algorithms onscaling-invariant functions. As a by-product we provide aconnexion between comparison-based adaptive stochasticalgorithms and Markov chain Monte Carlo algorithms.Comment: SIAM Journal on Optimization, Society for Industrial and Applied Mathematics, 201

    What Can We Learn Privately?

    Full text link
    Learning problems form an important category of computational tasks that generalizes many of the computations researchers apply to large real-life data sets. We ask: what concept classes can be learned privately, namely, by an algorithm whose output does not depend too heavily on any one input or specific training example? More precisely, we investigate learning algorithms that satisfy differential privacy, a notion that provides strong confidentiality guarantees in contexts where aggregate information is released about a database containing sensitive information about individuals. We demonstrate that, ignoring computational constraints, it is possible to privately agnostically learn any concept class using a sample size approximately logarithmic in the cardinality of the concept class. Therefore, almost anything learnable is learnable privately: specifically, if a concept class is learnable by a (non-private) algorithm with polynomial sample complexity and output size, then it can be learned privately using a polynomial number of samples. We also present a computationally efficient private PAC learner for the class of parity functions. Local (or randomized response) algorithms are a practical class of private algorithms that have received extensive investigation. We provide a precise characterization of local private learning algorithms. We show that a concept class is learnable by a local algorithm if and only if it is learnable in the statistical query (SQ) model. Finally, we present a separation between the power of interactive and noninteractive local learning algorithms.Comment: 35 pages, 2 figure
    corecore