308 research outputs found

    On the necessity of sufficient LMI conditions for time-delay systems arising from Legendre approximation

    Get PDF
    This work is dedicated to the stability analysis of time-delay systems with a single constant delay using the Lyapunov-Krasovskii theorem. This approach has been widely used in the literature and numerous sufficient conditions of stability have been proposed and expressed as linear matrix inequalities (LMI). The main criticism of the method that is often pointed out is that these LMI conditions are only sufficient, and there is a lack of information regarding the reduction of the conservatism. Recently, scalable methods have been investigated using Bessel-Legendre inequality or orthogonal polynomial-based inequalities. The interest of these methods relies on their hierarchical structure with a guarantee of reduction of the level of conservatism. However, the convergence is still an open question that will be answered for the first time in this paper. The objective is to prove that the stability of a time-delay system implies the feasibility of these scalable LMI, at a sufficiently large order of the Legendre polynomials. Moreover, the proposed contribution is even able to provide an analytic estimation of this order, giving rise to a necessary and sufficient LMI for the stability of time-delay systems

    New summation inequalities and their applications to discrete-time delay systems

    Full text link
    This paper provides new summation inequalities in both single and double forms to be used in stability analysis of discrete-time systems with time-varying delays. The potential capability of the newly derived inequalities is demonstrated by establishing less conservative stability conditions for a class of linear discrete-time systems with an interval time-varying delay in the framework of linear matrix inequalities. The effectiveness and least conservativeness of the derived stability conditions are shown by academic and practical examples.Comment: 15 pages, 01 figur

    An improved stability criterion for discrete-time time-delayed Lur’e systemwith sector-bounded nonlinearities

    Get PDF
    The absolute stability problem of discrete-time time-delayed Lur\u27e systems with sector bounded nonlinearities is investigated in this paper. Firstly, a modified Lyapunov-Krasovskii functional (LKF) is designed with augmenting additional double summation terms, which complements more coupling information between the delay intervals and other system state variables than some previous LKFs. Secondly, some improved delay-dependent absolute stability criteria based on linear matrix inequality form (LMI) are proposed via the modified LKF and the relaxed free-matrix-based summation inequality technique application. The stability criteria are less conservative than some results previously proposed. The reduction of the conservatism mainly relies on the full use of the relaxed summation inequality technique based on the modified LKF. Finally, two common numerical examples are presented to show the effectiveness of the proposed approach

    Integral Inequalities for the Analysis of Distributed Parameter Systems: A complete characterization via the Least-Squares Principle

    Full text link
    A wide variety of integral inequalities (IIs) have been proposed and studied for the stability analysis of distributed parameter systems using the Lyapunov functional approach. However, no unified mathematical framework has been proposed that could characterize the similarity and connection between these IIs, as most of them was introduced in a dispersed manner for the analysis of specific types of systems. Additionally, the extent to which the generality of these IIs can be expanded and the optimality of their lower bounds (LBs) remains open questions. In this work, we present two general classes of IIs that can generalize almost all IIs in the literature, whose integral kernels can contain a unlimited number of weighted L2 functions that are linearly independent in a Lebesgue sense. Moreover, we not only demonstrate the equivalence between the LBs of the proposed IIs under the same kernels and weighted functions, but also show that these LBs are guaranteed by the least squares principle, implying asymptotic convergence to the upper bound when the kernels functions constitutes a Schauder basis of the underlying Hilbert space. Given their general structures, the proposed IIs can be applied in various situations such as the stability analysis of coupled PDE-ODE systems or cybernetic systems that can be characterized by delay structures.Comment: Submitted to ACC 202

    Stability analysis of linear ODE-PDE interconnected systems

    Get PDF
    Les systèmes de dimension infinie permettent de modéliser un large spectre de phénomènes physiques pour lesquels les variables d'états évoluent temporellement et spatialement. Ce manuscrit s'intéresse à l'évaluation de la stabilité de leur point d'équilibre. Deux études de cas seront en particulier traitées : l'analyse de stabilité des systèmes interconnectés à une équation de transport, et à une équation de réaction-diffusion. Des outils théoriques existent pour l'analyse de stabilité de ces systèmes linéaires de dimension infinie et s'appuient sur une algèbre d'opérateurs plutôt que matricielle. Cependant, ces résultats d'existence soulèvent un problème de constructibilité numérique. Lors de l'implémentation, une approximation est réalisée et les résultats sont conservatifs. La conception d'outils numériques menant à des garanties de stabilité pour lesquelles le degré de conservatisme est évalué et maîtrisé est alors un enjeu majeur. Comment développer des critères numériques fiables permettant de statuer sur la stabilité ou l'instabilité des systèmes linéaires de dimension infinie ? Afin de répondre à cette question, nous proposons ici une nouvelle méthode générique qui se décompose en deux temps. D'abord, sous l'angle de l'approximation sur les polynômes de Legendre, des modèles augmentés sont construits et découpent le système original en deux blocs : d'une part, un système de dimension finie approximant est isolé, d'autre part, l'erreur de troncature de dimension infinie est conservée et modélisée. Ensuite, des outils fréquentiels et temporels de dimension finie sont déployés afin de proposer des critères de stabilité plus ou moins coûteux numériquement en fonction de l'ordre d'approximation choisi. En fréquentiel, à l'aide du théorème du petit gain, des conditions suffisantes de stabilité sont obtenues. En temporel, à l'aide du théorème de Lyapunov, une sous-estimation des régions de stabilité est proposée sous forme d'inégalité matricielle linéaire et une sur-estimation sous forme de test de positivité. Nos deux études de cas ont ainsi été traitées à l'aide de cette méthodologie générale. Le principal résultat obtenu concerne le cas des systèmes EDO-transport interconnectés, pour lequel l'approximation et l'analyse de stabilité à l'aide des polynômes de Legendre mène à des estimations des régions de stabilité qui convergent exponentiellement vite. La méthode développée dans ce manuscrit peut être adaptée à d'autres types d'approximations et exportée à d'autres systèmes linéaires de dimension infinie. Ce travail ouvre ainsi la voie à l'obtention de conditions nécessaires et suffisantes de stabilité de dimension finie pour les systèmes de dimension infinie.Infinite dimensional systems allow to model a large panel of physical phenomena for which the state variables evolve both temporally and spatially. This manuscript deals with the evaluation of the stability of their equilibrium point. Two case studies are treated in particular: the stability analysis of ODE-transport, and ODE-reaction-diffusion interconnected systems. Theoretical tools exist for the stability analysis of these infinite-dimensional linear systems and are based on an operator algebra rather than a matrix algebra. However, these existence results raise a problem of numerical constructibility. During implementation, an approximation is performed and the results are conservative. The design of numerical tools leading to stability guarantees for which the degree of conservatism is evaluated and controlled is then a major issue. How can we develop reliable numerical criteria to rule on the stability or instability of infinite-dimensional linear systems? In order to answer this question, one proposes here a new generic method, which is decomposed in two steps. First, from the perspective of Legendre polynomials approximation, augmented models are built and split the original system into two blocks: on the one hand, a finite-dimensional approximated system is isolated, on the other hand, the infinite-dimensional truncation error is preserved and modeled. Then, frequency and time tools of finite dimension are deployed in order to propose stability criteria that have high or low numerical load depending on the approximated order. In frequencies, with the aid of the small gain theorem, sufficient stability conditions are obtained. In temporal, with the aid of the Lyapunov theorem, an under estimate of the stability regions is proposed as a linear matrix inequality and an over estimate as a positivity test. Our two case studies have been treated with this general methodology. The main result concerns the case of ODE-transport interconnected systems, for which the approximation and stability analysis using Legendre polynomials leads to exponentially fast converging estimates of stability regions. The method developed in this manuscript can be adapted to other types of approximations and exported to other infinite-dimensional linear systems. Thus, this work opens the way to obtain necessary and sufficient finite-dimensional conditions of stability for infinite-dimensional systems
    • …
    corecore