6,797 research outputs found

    A Developmental Organization for Robot Behavior

    Get PDF
    This paper focuses on exploring how learning and development can be structured in synthetic (robot) systems. We present a developmental assembler for constructing reusable and temporally extended actions in a sequence. The discussion adopts the traditions of dynamic pattern theory in which behavior is an artifact of coupled dynamical systems with a number of controllable degrees of freedom. In our model, the events that delineate control decisions are derived from the pattern of (dis)equilibria on a working subset of sensorimotor policies. We show how this architecture can be used to accomplish sequential knowledge gathering and representation tasks and provide examples of the kind of developmental milestones that this approach has already produced in our lab

    Position / force control of systems subjected to communicaton delays and interruptions in bilateral teleoperation

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 65-68)Text in English; Abstract: Turkish and Englishix, 76 leavesTeleoperation technology allows to remotely operate robotic (slave) systems located in hazardous, risky and distant environments. The human operator sends commands through the controller (master) system to execute the tasks from a distance. The operator is provided with necessary (visual, audio or haptic) feedback to accomplish the mission remotely. In bilateral teleoperation, continuous feedback from the remote environment is generated. Thus, the operator can handle the task as if the operator is in the remote environment relying on the relevant feedback. Since teleoperation deals with systems controlled from a distance, time delays and package losses in transmission of information are present. These communication failures affect the human perception and system stability, and thus, the ability of operator to handle the task successfully. The objective of this thesis is to investigate and develop a control algorithm, which utilizes model mediated teleoperation integrating parallel position/force controllers, to compensate for the instability issues and excessive forcing applied to the environment arising from communication failures. Model mediation technique is extended for three-degrees-of-freedom teleoperation and a parallel position/force controller, impedance controller, is integrated in the control algorithm. The proposed control method is experimentally tested by using Matlab Simulink blocksets for real-time experimentation in which haptic desktop devices, Novint Falcon and Phantom Desktop are configured as master and slave subsystems of the bilateral teleoperation. The results of these tests indicate that the stability and passivity of proposed bilateral teleoperation systems are preserved during constant and variable time delays and data losses while the position and force tracking test results provide acceptable performance with bounded errors

    Technology for large space systems: A special bibliography with indexes (supplement 03)

    Get PDF
    A bibliography containing 217 abstracts addressing the technology for large space systems is presented. State of the art and advanced concepts concerning interactive analysis and design, structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, solar power satellite systems, and flight experiments are represented

    Wide-Area Control Schemes to Improve Small Signal Stability in Power Systems

    Get PDF
    One of the main concerns for the secure and reliable operation of power systems is the small signal stability problem. In the complex and highly interconnected structure of future power systems, relying solely on operator responses and conventional controls cannot assure reliability. Therefore, there is a need for advanced Wide-Area Control Schemes (WACS) that can automatically respond to degradation of reliability in the system. The main objective of this dissertation is to address two key challenges regarding the design and implementation of wide-area control schemes for damping inter-area oscillations. First is the high communication cost associated with optimal centralized control approaches. As power networks are large-scale systems, both the synthesis and the implementation of centralized controllers suggested by most of the previous studies are often impossible in practice. Second is the difficulty of obtaining accurate system-wide dynamic models for initiating and updating the control design. In this research, we introduced wide-area damping control strategies that not only ensure the small signal stability with the desired performance but also consider communication and model information limitations in the design. A state feedback formulation is proposed that aims to simultaneously optimize a standard Linear Quadratic Regulator (LQR) cost criterion and induce a pre-defined communication structure. We solved the proposed problem with three different objectives to target a specific wide-area damping control design challenge in each setting. First, the communication structure is enforced as a constraint in the optimization and solved for a large idealized power network with information symmetry. Second, to make the method suitable for systems with arbitrary structures and information patterns, we proposed a group-sparse regularization to be added to the optimization cost function. Applications of the method for inducing the desired communication network and finding effective measurement and control signal combinations were also investigated. Third, we paired the proposed optimal control with a real-time model identification approach, to create a wide-area control framework that is capable of dealing with model information limitations and inaccuracies in online implementation. The performances of the proposed wide-area damping control architectures are validated through nonlinear simulations on different test systems

    Wide-Area Emergency Control in Power Transmission

    Get PDF

    Review of selection criteria for sensor and actuator configurations suitable for internal combustion engines

    Get PDF
    This literature review considers the problem of finding a suitable configuration of sensors and actuators for the control of an internal combustion engine. It takes a look at the methods, algorithms, processes, metrics, applications, research groups and patents relevant for this topic. Several formal metric have been proposed, but practical use remains limited. Maximal information criteria are theoretically optimal for selecting sensors, but hard to apply to a system as complex and nonlinear as an engine. Thus, we reviewed methods applied to neighboring fields including nonlinear systems and non-minimal phase systems. Furthermore, the closed loop nature of control means that information is not the only consideration, and speed, stability and robustness have to be considered. The optimal use of sensor information also requires the use of models, observers, state estimators or virtual sensors, and practical acceptance of these remains limited. Simple control metrics such as conditioning number are popular, mostly because they need fewer assumptions than closed-loop metrics, which require a full plant, disturbance and goal model. Overall, no clear consensus can be found on the choice of metrics to define optimal control configurations, with physical measures, linear algebra metrics and modern control metrics all being used. Genetic algorithms and multi-criterial optimisation were identified as the most widely used methods for optimal sensor selection, although addressing the dimensionality and complexity of formulating the problem remains a challenge. This review does present a number of different successful approaches for specific applications domains, some of which may be applicable to diesel engines and other automotive applications. For a thorough treatment, non-linear dynamics and uncertainties need to be considered together, which requires sophisticated (non-Gaussian) stochastic models to establish the value of a control architecture

    Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    Get PDF
    The progress made by levels 1, 2, and 3 of the Office of Space Station in developing and applying advanced automation and robotics technology is described. Emphasis is placed upon the Space Station Freedom Program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) progress report 10, the flight telerobotic servicer, and the Advanced Development Program. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for the Space Station Freedom

    Wave Prediction and Delay Modeling for Teleoperation via Internet

    Get PDF
    This paper propose a novel approach for modeling the end-to-end time delay dynamics of the internet using system identification, and use it for controlling real-time internet-based telerobotic operations. When a single model is used, it needs to adapt to the operating conditions before an appropriate control mechanism can be applied. Slow adaptation may result in large transient errors. As an alternative, we propose to use an adaptive multiple model framework, and determine the best model for the current operating conditions to activate the corresponding controller. We employ multivariable wave prediction method to achieve this objective
    corecore