53 research outputs found

    Hyperboloidal evolution of test fields in three spatial dimensions

    Full text link
    We present the numerical implementation of a clean solution to the outer boundary and radiation extraction problems within the 3+1 formalism for hyperbolic partial differential equations on a given background. Our approach is based on compactification at null infinity in hyperboloidal scri fixing coordinates. We report numerical tests for the particular example of a scalar wave equation on Minkowski and Schwarzschild backgrounds. We address issues related to the implementation of the hyperboloidal approach for the Einstein equations, such as nonlinear source functions, matching, and evaluation of formally singular terms at null infinity.Comment: 10 pages, 8 figure

    Multi-Objective Trajectory Optimization of a Hypersonic Reconnaissance Vehicle with Temperature Constraints

    Get PDF
    Temperature-constrained optimal trajectories for a scramjet-based hypersonic reconnaissance vehicle were generated by developing an optimal control formulation and solving it using a variable order Gauss-Radau quadrature collocation method. The vehicle was assumed to be an air-breathing reconnaissance aircraft that has specified takeoff/landing locations, airborne refueling constraints, specified no-fly zones, and specified targets for sensor data collections. The aircraft model included fight dynamics, aerodynamics, and thermal constraints. This model was incorporated into an optimal control formulation that includes constraints on both the vehicle as well as mission parameters, such as avoidance of no-fly zones and coverage of high-value targets. Optimal trajectories were be developed using several different performance costs in the optimal control formulation--minimum time, minimum time with control penalties, and maximum range. The resulting analysis demonstrated that optimal trajectories that meet specified mission parameters and constraints can be determined and used for larger-scale operational and campaign planning

    High order variational integrators in the optimal control of mechanical systems

    Get PDF
    In recent years, much effort in designing numerical methods for the simulation and optimization of mechanical systems has been put into schemes which are structure preserving. One particular class are variational integrators which are momentum preserving and symplectic. In this article, we develop two high order variational integrators which distinguish themselves in the dimension of the underling space of approximation and we investigate their application to finite-dimensional optimal control problems posed with mechanical systems. The convergence of state and control variables of the approximated problem is shown. Furthermore, by analyzing the adjoint systems of the optimal control problem and its discretized counterpart, we prove that, for these particular integrators, dualization and discretization commute.Comment: 25 pages, 9 figures, 1 table, submitted to DCDS-

    Hybrid Solution of Stochastic Optimal Control Problems using Gauss Pseudospectral Method and Generalized Polynomial Chaos Algorithms

    Get PDF
    Two numerical methods, Gauss Pseudospectral Method and Generalized Polynomial Chaos Algorithm, were combined to form a hybrid algorithm for solving nonlinear optimal control and optimal path planning problems with uncertain parameters. The algorithm was applied to two concept demonstration problems: a nonlinear optimal control problem with multiplicative uncertain elements and a mission planning problem sponsored by USSTRATCOM. The mission planning scenario was constructed to find the path that minimizes the probability of being killed by lethal threats whose locations are uncertain to statistically quantify the effects those uncertainties have on the flight path solution, and to use the statistical properties to estimate the probability that the vehicle will be killed during mission execution. The results demonstrated that the method is able to effectively characterize how the optimal solution changes with uncertainty and that the results can be presented in a form that can be used by mission planners and aircrews to assess risks associated with a mission profile

    Stochastic Real-time Optimal Control: A Pseudospectral Approach for Bearing-Only Trajectory Optimization

    Get PDF
    A method is presented to couple and solve the optimal control and the optimal estimation problems simultaneously, allowing systems with bearing-only sensors to maneuver to obtain observability for relative navigation without unnecessarily detracting from a primary mission. A fundamentally new approach to trajectory optimization and the dual control problem is developed, constraining polynomial approximations of the Fisher Information Matrix to provide an information gradient and allow prescription of the level of future estimation certainty required for mission accomplishment. Disturbances, modeling deficiencies, and corrupted measurements are addressed with recursive updating of the target estimate with an Unscented Kalman Filter and the optimal path with Radau pseudospectral collocation methods and sequential quadratic programming. The basic real-time optimal control (RTOC) structure is investigated, specifically addressing limitations of current techniques in this area that lose error integration. The resulting guidance method can be applied to any bearing-only system, such as submarines using passive sonar, anti-radiation missiles, or small UAVs seeking to land on power lines for energy harvesting. Methods and tools required for implementation are developed, including variable calculation timing and tip-tail blending for potential discontinuities. Validation is accomplished with simulation and flight test, autonomously landing a quadrotor helicopter on a wire

    A seamless, extended DG approach for advection-diffusion problems on unbounded domains

    Full text link
    We propose and analyze a seamless extended Discontinuous Galerkin (DG) discretization of advection-diffusion equations on semi-infinite domains. The semi-infinite half line is split into a finite subdomain where the model uses a standard polynomial basis, and a semi-unbounded subdomain where scaled Laguerre functions are employed as basis and test functions. Numerical fluxes enable the coupling at the interface between the two subdomains in the same way as standard single domain DG interelement fluxes. A novel linear analysis on the extended DG model yields unconditional stability with respect to the P\'eclet number. Errors due to the use of different sets of basis functions on different portions of the domain are negligible, as highlighted in numerical experiments with the linear advection-diffusion and viscous Burgers' equations. With an added damping term on the semi-infinite subdomain, the extended framework is able to efficiently simulate absorbing boundary conditions without additional conditions at the interface. A few modes in the semi-infinite subdomain are found to suffice to deal with outgoing single wave and wave train signals more accurately than standard approaches at a given computational cost, thus providing an appealing model for fluid flow simulations in unbounded regions.Comment: 27 pages, 8 figure

    Spectral methods for the wave equation in second-order form

    Get PDF
    Current spectral simulations of Einstein's equations require writing the equations in first-order form, potentially introducing instabilities and inefficiencies. We present a new penalty method for pseudo-spectral evolutions of second order in space wave equations. The penalties are constructed as functions of Legendre polynomials and are added to the equations of motion everywhere, not only on the boundaries. Using energy methods, we prove semi-discrete stability of the new method for the scalar wave equation in flat space and show how it can be applied to the scalar wave on a curved background. Numerical results demonstrating stability and convergence for multi-domain second-order scalar wave evolutions are also presented. This work provides a foundation for treating Einstein's equations directly in second-order form by spectral methods.Comment: 16 pages, 5 figure

    A mixed-binary non-linear programming approach for the numerical solution of a family of singular optimal control problems

    Get PDF
    This paper presents a new approach for the efficient solution of singular optimal control problems (SOCPs). A novel feature of the proposed method is that it does not require a priori knowledge of the structure of solution. At first, the SOCP is converted into a binary optimal control problem. Then, by utilising the pseudospectral method, the resulting problem is transcribed to a mixed-binary non-linear programming problem. This mixed-binary non-linear programming problem, which can be solved by well-known solvers, allows us to detect the structure of the optimal control and to compute the approximating solution. The main advantages of the present method are that: (1) without a priori information, the structure of optimal control is detected; (2) it produces good results even using a small number of collocation points; (3) the switching times can be captured accurately. These advantages are illustrated through a numerical implementation of the method on four examples. (c) 2017 Informa UK Limited, trading as Taylor & Francis Grou

    Discontinuous Galerkin method for the spherically reduced BSSN system with second-order operators

    Get PDF
    We present a high-order accurate discontinuous Galerkin method for evolving the spherically-reduced Baumgarte-Shapiro-Shibata-Nakamura (BSSN) system expressed in terms of second-order spatial operators. Our multi-domain method achieves global spectral accuracy and long-time stability on short computational domains. We discuss in detail both our scheme for the BSSN system and its implementation. After a theoretical and computational verification of the proposed scheme, we conclude with a brief discussion of issues likely to arise when one considers the full BSSN system.Comment: 35 pages, 6 figures, 1 table, uses revtex4. Revised in response to referee's repor

    Dealiasing techniques for high-order spectral element methods on regular and irregular grids

    Get PDF
    High-order methods are becoming increasingly attractive in both academia and industry, especially in the context of computational fluid dynamics. However, before they can be more widely adopted, issues such as lack of robustness in terms of numerical stability need to be addressed, particularly when treating industrial-type problems where challenging geometries and a wide range of physical scales, typically due to high Reynolds numbers, need to be taken into account. One source of instability is aliasing effects which arise from the nonlinearity of the underlying problem. In this work we detail two dealiasing strategies based on the concept of consistent integration. The first uses a localised approach, which is useful when the nonlinearities only arise in parts of the problem. The second is based on the more traditional approach of using a higher quadrature. The main goal of both dealiasing techniques is to improve the robustness of high order spectral element methods, thereby reducing aliasing-driven instabilities. We demonstrate how these two strategies can be effectively applied to both continuous and discontinuous discretisations, where, in the latter, both volumetric and interface approximations must be considered. We show the key features of each dealiasing technique applied to the scalar conservation law with numerical examples and we highlight the main differences in terms of implementation between continuous and discontinuous spatial discretisations
    • …
    corecore