12,909 research outputs found

    Delay-induced patterns in a two-dimensional lattice of coupled oscillators

    Get PDF
    We show how a variety of stable spatio-temporal periodic patterns can be created in 2D-lattices of coupled oscillators with non-homogeneous coupling delays. A "hybrid dispersion relation" is introduced, which allows studying the stability of time-periodic patterns analytically in the limit of large delay. The results are illustrated using the FitzHugh-Nagumo coupled neurons as well as coupled limit cycle (Stuart-Landau) oscillators

    Synchronization of electrically coupled resonate-and-fire neurons

    Full text link
    Electrical coupling between neurons is broadly present across brain areas and is typically assumed to synchronize network activity. However, intrinsic properties of the coupled cells can complicate this simple picture. Many cell types with strong electrical coupling have been shown to exhibit resonant properties, and the subthreshold fluctuations arising from resonance are transmitted through electrical synapses in addition to action potentials. Using the theory of weakly coupled oscillators, we explore the effect of both subthreshold and spike-mediated coupling on synchrony in small networks of electrically coupled resonate-and-fire neurons, a hybrid neuron model with linear subthreshold dynamics and discrete post-spike reset. We calculate the phase response curve using an extension of the adjoint method that accounts for the discontinuity in the dynamics. We find that both spikes and resonant subthreshold fluctuations can jointly promote synchronization. The subthreshold contribution is strongest when the voltage exhibits a significant post-spike elevation in voltage, or plateau. Additionally, we show that the geometry of trajectories approaching the spiking threshold causes a "reset-induced shear" effect that can oppose synchrony in the presence of network asymmetry, despite having no effect on the phase-locking of symmetrically coupled pairs

    Analysis of Discrete and Hybrid Stochastic Systems by Nonlinear Contraction Theory

    Get PDF
    We investigate the stability properties of discrete and hybrid stochastic nonlinear dynamical systems. More precisely, we extend the stochastic contraction theorems (which were formulated for continuous systems) to the case of discrete and hybrid resetting systems. In particular, we show that the mean square distance between any two trajectories of a discrete (or hybrid resetting) contracting stochastic system is upper-bounded by a constant after exponential transients. Using these results, we study the synchronization of noisy nonlinear oscillators coupled by discrete noisy interactions.Comment: 6 pages, 1 figur

    Synchronization in random networks with given expected degree sequences

    Get PDF
    Synchronization in random networks with given expected degree sequences is studied. We also investigate in details the synchronization in networks whose topology is described by classical random graphs, power-law random graphs and hybrid graphs when N goes to infinity. In particular, we show that random graphs almost surely synchronize. We also show that adding small number of global edges to a local graph makes the corresponding hybrid graph to synchroniz

    Phase Diagram for the Winfree Model of Coupled Nonlinear Oscillators

    Full text link
    In 1967 Winfree proposed a mean-field model for the spontaneous synchronization of chorusing crickets, flashing fireflies, circadian pacemaker cells, or other large populations of biological oscillators. Here we give the first bifurcation analysis of the model, for a tractable special case. The system displays rich collective dynamics as a function of the coupling strength and the spread of natural frequencies. Besides incoherence, frequency locking, and oscillator death, there exist novel hybrid solutions that combine two or more of these states. We present the phase diagram and derive several of the stability boundaries analytically.Comment: 4 pages, 4 figure

    Loss of coherence in dynamical networks: spatial chaos and chimera states

    Full text link
    We discuss the breakdown of spatial coherence in networks of coupled oscillators with nonlocal interaction. By systematically analyzing the dependence of the spatio-temporal dynamics on the range and strength of coupling, we uncover a dynamical bifurcation scenario for the coherence-incoherence transition which starts with the appearance of narrow layers of incoherence occupying eventually the whole space. Our findings for coupled chaotic and periodic maps as well as for time-continuous R\"ossler systems reveal that intermediate, partially coherent states represent characteristic spatio-temporal patterns at the transition from coherence to incoherence.Comment: 4 pages, 4 figure
    • …
    corecore