44 research outputs found

    Stability of Steady Multi-Wave Configurations for the Full Euler Equations of Compressible Fluid Flow

    Full text link
    We are concerned with the stability of steady multi-wave configurations for the full Euler equations of compressible fluid flow. In this paper, we focus on the stability of steady four-wave configurations that are the solutions of the Riemann problem in the flow direction, consisting of two shocks, one vortex sheet, and one entropy wave, which is one of the core multi-wave configurations for the two-dimensional Euler equations. It is proved that such steady four-wave configurations in supersonic flow are stable in structure globally, even under the BV perturbation of the incoming flow in the flow direction. In order to achieve this, we first formulate the problem as the Cauchy problem (initial value problem) in the flow direction, and then develop a modified Glimm difference scheme and identify a Glimm-type functional to obtain the required BV estimates by tracing the interactions not only between the strong shocks and weak waves, but also between the strong vortex sheet/entropy wave and weak waves. The key feature of the Euler equations is that the reflection coefficient is always less than 1, when a weak wave of different family interacts with the strong vortex sheet/entropy wave or the shock wave, which is crucial to guarantee that the Glimm functional is decreasing. Then these estimates are employed to establish the convergence of the approximate solutions to a global entropy solution, close to the background solution of steady four-wave configuration.Comment: 9 figures

    Multidimensional Conservation Laws: Overview, Problems, and Perspective

    Full text link
    Some of recent important developments are overviewed, several longstanding open problems are discussed, and a perspective is presented for the mathematical theory of multidimensional conservation laws. Some basic features and phenomena of multidimensional hyperbolic conservation laws are revealed, and some samples of multidimensional systems/models and related important problems are presented and analyzed with emphasis on the prototypes that have been solved or may be expected to be solved rigorously at least for some cases. In particular, multidimensional steady supersonic problems and transonic problems, shock reflection-diffraction problems, and related effective nonlinear approaches are analyzed. A theory of divergence-measure vector fields and related analytical frameworks for the analysis of entropy solutions are discussed.Comment: 43 pages, 3 figure

    Stability of Transonic Characteristic Discontinuities in Two-Dimensional Steady Compressible Euler Flows

    Full text link
    For a two-dimensional steady supersonic Euler flow past a convex cornered wall with right angle, a characteristic discontinuity (vortex sheet and/or entropy wave) is generated, which separates the supersonic flow from the gas at rest (hence subsonic). We proved that such a transonic characteristic discontinuity is structurally stable under small perturbations of the upstream supersonic flow in BVBV. The existence of a weak entropy solution and Lipschitz continuous free boundary (i.e. characteristic discontinuity) is established. To achieve this, the problem is formulated as a free boundary problem for a nonstrictly hyperbolic system of conservation laws; and the free boundary problem is then solved by analyzing nonlinear wave interactions and employing the front tracking method.Comment: 26 pages, 3 figure

    Steady Euler Flows with Large Vorticity and Characteristic Discontinuities in Arbitrary Infinitely Long Nozzles

    Full text link
    We establish the existence and uniqueness of smooth solutions with large vorticity and weak solutions with vortex sheets/entropy waves for the steady Euler equations for both compressible and incompressible fluids in arbitrary infinitely long nozzles. We first develop a new approach to establish the existence of smooth solutions without assumptions on the sign of the second derivatives of the horizontal velocity, or the Bernoulli and entropy functions, at the inlet for the smooth case. Then the existence for the smooth case can be applied to construct approximate solutions to establish the existence of weak solutions with vortex sheets/entropy waves by nonlinear arguments. This is the first result on the global existence of solutions of the multidimensional steady compressible full Euler equations with free boundaries, which are not necessarily small perturbations of piecewise constant background solutions. The subsonic-sonic limit of the solutions is also shown. Finally, through the incompressible limit, we establish the existence and uniqueness of incompressible Euler flows in arbitrary infinitely long nozzles for both the smooth solutions with large vorticity and the weak solutions with vortex sheets. The methods and techniques developed here will be useful for solving other problems involving similar difficulties.Comment: 43 pages; 2 figures; To be published in Advances in Mathematics (2019

    Stability of transonic jets with strong rarefaction waves for two-dimensional steady compressible Euler system

    Full text link
    We study supersonic flow past a convex corner which is surrounded by quiescent gas. When the pressure of the upstream supersonic flow is larger than that of the quiescent gas, there appears a strong rarefaction wave to rarefy the supersonic gas. Meanwhile, a transonic characteristic discontinuity appears to separate the supersonic flow behind the rarefaction wave from the static gas. In this paper, we employ a wave front tracking method to establish structural stability of such a flow pattern under non-smooth perturbations of the upcoming supersonic flow. It is an initial-value/free-boundary problem for the two-dimensional steady non-isentropic compressible Euler system. The main ingredients are careful analysis of wave interactions and construction of suitable Glimm functional, to overcome the difficulty that the strong rarefaction wave has a large total variation.Comment: 34 pages, 2 figures. Accepted by "Discrete & Continuous Dynamical Systems - A" for publicatio
    corecore