252 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Configuration Management of Distributed Systems over Unreliable and Hostile Networks

    Get PDF
    Economic incentives of large criminal profits and the threat of legal consequences have pushed criminals to continuously improve their malware, especially command and control channels. This thesis applied concepts from successful malware command and control to explore the survivability and resilience of benign configuration management systems. This work expands on existing stage models of malware life cycle to contribute a new model for identifying malware concepts applicable to benign configuration management. The Hidden Master architecture is a contribution to master-agent network communication. In the Hidden Master architecture, communication between master and agent is asynchronous and can operate trough intermediate nodes. This protects the master secret key, which gives full control of all computers participating in configuration management. Multiple improvements to idempotent configuration were proposed, including the definition of the minimal base resource dependency model, simplified resource revalidation and the use of imperative general purpose language for defining idempotent configuration. Following the constructive research approach, the improvements to configuration management were designed into two prototypes. This allowed validation in laboratory testing, in two case studies and in expert interviews. In laboratory testing, the Hidden Master prototype was more resilient than leading configuration management tools in high load and low memory conditions, and against packet loss and corruption. Only the research prototype was adaptable to a network without stable topology due to the asynchronous nature of the Hidden Master architecture. The main case study used the research prototype in a complex environment to deploy a multi-room, authenticated audiovisual system for a client of an organization deploying the configuration. The case studies indicated that imperative general purpose language can be used for idempotent configuration in real life, for defining new configurations in unexpected situations using the base resources, and abstracting those using standard language features; and that such a system seems easy to learn. Potential business benefits were identified and evaluated using individual semistructured expert interviews. Respondents agreed that the models and the Hidden Master architecture could reduce costs and risks, improve developer productivity and allow faster time-to-market. Protection of master secret keys and the reduced need for incident response were seen as key drivers for improved security. Low-cost geographic scaling and leveraging file serving capabilities of commodity servers were seen to improve scaling and resiliency. Respondents identified jurisdictional legal limitations to encryption and requirements for cloud operator auditing as factors potentially limiting the full use of some concepts

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    Investigating the Effects of Network Dynamics on Quality of Delivery Prediction and Monitoring for Video Delivery Networks

    Get PDF
    Video streaming over the Internet requires an optimized delivery system given the advances in network architecture, for example, Software Defined Networks. Machine Learning (ML) models have been deployed in an attempt to predict the quality of the video streams. Some of these efforts have considered the prediction of Quality of Delivery (QoD) metrics of the video stream in an effort to measure the quality of the video stream from the network perspective. In most cases, these models have either treated the ML algorithms as black-boxes or failed to capture the network dynamics of the associated video streams. This PhD investigates the effects of network dynamics in QoD prediction using ML techniques. The hypothesis that this thesis investigates is that ML techniques that model the underlying network dynamics achieve accurate QoD and video quality predictions and measurements. The thesis results demonstrate that the proposed techniques offer performance gains over approaches that fail to consider network dynamics. This thesis results highlight that adopting the correct model by modelling the dynamics of the network infrastructure is crucial to the accuracy of the ML predictions. These results are significant as they demonstrate that improved performance is achieved at no additional computational or storage cost. These techniques can help the network manager, data center operatives and video service providers take proactive and corrective actions for improved network efficiency and effectiveness

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Cooperative scheduling and load balancing techniques in fog and edge computing

    Get PDF
    Fog and Edge Computing are two models that reached maturity in the last decade. Today, they are two solid concepts and plenty of literature tried to develop them. Also corroborated by the development of technologies, like for example 5G, they can now be considered de facto standards when building low and ultra-low latency applications, privacy-oriented solutions, industry 4.0 and smart city infrastructures. The common trait of Fog and Edge computing environments regards their inherent distributed and heterogeneous nature where the multiple (Fog or Edge) nodes are able to interact with each other with the essential purpose of pre-processing data gathered by the uncountable number of sensors to which they are connected to, even by running significant ML models and relying upon specific processors (TPU). However, nodes are often placed in a geographic domain, like a smart city, and the dynamic of the traffic during the day may cause some nodes to be overwhelmed by requests while others instead may become completely idle. To achieve the optimal usage of the system and also to guarantee the best possible QoS across all the users connected to the Fog or Edge nodes, the need to design load balancing and scheduling algorithms arises. In particular, a reasonable solution is to enable nodes to cooperate. This capability represents the main objective of this thesis, which is the design of fully distributed algorithms and solutions whose purpose is the one of balancing the load across all the nodes, also by following, if possible, QoS requirements in terms of latency or imposing constraints in terms of power consumption when the nodes are powered by green energy sources. Unfortunately, when a central orchestrator is missing, a crucial element which makes the design of such algorithms difficult is that nodes need to know the state of the others in order to make the best possible scheduling decision. However, it is not possible to retrieve the state without introducing further latency during the service of the request. Furthermore, the retrieved information about the state is always old, and as a consequence, the decision is always relying on imprecise data. In this thesis, the problem is circumvented in two main ways. The first one considers randomised algorithms which avoid probing all of the neighbour nodes in favour of at maximum two nodes picked at random. This is proven to bring an exponential improvement in performance with respect to the probe of a single node. The second approach, instead, considers Reinforcement Learning as a technique for inferring the state of the other nodes thanks to the reward received by the agents when requests are forwarded. Moreover, the thesis will also focus on the energy aspect of the Edge devices. In particular, will be analysed a scenario of Green Edge Computing, where devices are powered only by Photovoltaic Panels and a scenario of mobile offloading targeting ML image inference applications. Lastly, a final glance will be given at a series of infrastructural studies, which will give the foundations for implementing the proposed algorithms on real devices, in particular, Single Board Computers (SBCs). There will be presented a structural scheme of a testbed of Raspberry Pi boards, and a fully-fledged framework called ``P2PFaaS'' which allows the implementation of load balancing and scheduling algorithms based on the Function-as-a-Service (FaaS) paradigm

    On distributed ledger technology for the internet of things: design and applications

    Get PDF
    Distributed ledger technology (DLT) can used to store information in such a way that no individual or organisation can compromise its veracity, contrary to a traditional centralised ledger. This nascent technology has received a great deal of attention from both researchers and practitioners in recent years due to the vast array of open questions related to its design and the assortment novel applications it unlocks. In this thesis, we are especially interested in the design of DLTs suitable for application in the domain of the internet of things (IoT), where factors such as efficiency, performance and scalability are of paramount importance. This work confronts the challenges of designing IoT-oriented distributed ledgers through analysis of ledger properties, development of design tools and the design of a number of core protocol components. We begin by introducing a class of DLTs whose data structures consist of directed acyclic graphs (DAGs) and which possess properties that make them particularly well suited to IoT applications. With a focus on the DAG structure, we then present analysis through mathematical modelling and simulations which provides new insights to the properties of this class of ledgers and allows us to propose novel security enhancements. Next, we shift our focus away from the DAG structure itself to another open problem for DAG-based distributed ledgers, that of access control. Specifically, we present a networking approach which removes the need for an expensive and inefficient mechanism known as Proof of Work, solving an open problem for IoT-oriented distributed ledgers. We then draw upon our analysis of the DAG structure to integrate and test our new access control with other core components of the DLT. Finally, we present a mechanism for orchestrating the interaction between users of a DLT and its operators, seeking to improves the usability of DLTs for IoT applications. In the appendix, we present two projects also carried out during this PhD which showcase applications of this technology in the IoT domain.Open Acces
    • …
    corecore