25,465 research outputs found

    Microwave Characteristics of an Independently Biased 3-stack InGaP/GaAs HBT Configuration

    Get PDF
    This paper investigates various important microwave characteristics of an independently biased 3-stack InGaP/GaAs heterojunction bipolar transistor (HBT) monolithic microwave integrated circuit (MMIC) chip at both small-signal and large-signal operation. By taking the advantage of the independently biased functionality, bias condition for individual transistor can be adjusted flexibly, resulting in the ability of independent control for both small-signal and large-signal performances. It was found that at small-signal operation stability and isolation characteristics of the proposed configuration can be significantly improved by controlling bias condition of the second-stage and the third-stage transistors while at large-signal operation its linearity and power gain can be improved through controlling the bias condition of the first-stage and the third-stage transistors. To demonstrate the benefits of using such an independently biased configuration, a measured optimum large-signal performance at an operation frequency of 1.6 GHz under an optimum bias condition for the high gain, low distortion were obtained as: PAE = 23.5 %, Pout = 12 dBm; Gain = 32.6 dB at IMD3 = -35 dBc. Moreover, to demonstrate the superior advantage of the proposed configuration, its small-signal and large-signal performance were also compared to that of a single stage common-emitter, a conventional 2-stack, an independently biased 2-stack and a conventional 3-stack configuration. The compared results showed that the independently biased 3-stack is the best candidate among the configurations for various wireless communications applications

    Optimising the multiplex factor of the frequency domain multiplexed readout of the TES-based microcalorimeter imaging array for the X-IFU instrument on the Athena Xray observatory

    Full text link
    Athena is a space-based X-ray observatory intended for exploration of the hot and energetic universe. One of the science instruments on Athena will be the X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer, based on a large cryogenic imaging array of Transition Edge Sensors (TES) based microcalorimeters operating at a temperature of 100mK. The imaging array consists of 3800 pixels providing 2.5 eV spectral resolution, and covers a field of view with a diameter of of 5 arc minutes. Multiplexed readout of the cryogenic microcalorimeter array is essential to comply with the cooling power and complexity constraints on a space craft. Frequency domain multiplexing has been under development for the readout of TES-based detectors for this purpose, not only for the X-IFU detector arrays but also for TES-based bolometer arrays for the Safari instrument of the Japanese SPICA observatory. This paper discusses the design considerations which are applicable to optimise the multiplex factor within the boundary conditions as set by the space craft. More specifically, the interplay between the science requirements such as pixel dynamic range, pixel speed, and cross talk, and the space craft requirements such as the power dissipation budget, available bandwidth, and electromagnetic compatibility will be discussed

    Gain and Stability Models for HBT Grid Amplifiers

    Get PDF
    A 16-element heterojunction bipolar transistor (HBT) grid amplifier has been fabricated with a peak gain of 11 dB at 9.9 GHz with a 3-dB bandwidth of 350 MHz. We report a gain analysis model for the grid and give a comparison of the measurement and theory. The measured patterns show the evidence of a common-mode oscillation. A stability model for the common-mode oscillation is developed. Based on the stability model, a lumped capacitor gives suitable phase shift of the circular function, thus stabilizing the grid. A second 18-element grid was fabricated, using this theory, with improved stability

    Increasing the talk-time of mobile radios with efficient linear transmitter architectures

    Get PDF

    A high sensitivity ultra-low temperature RF conductance and noise measurement setup

    Full text link
    We report on the realization of a high sensitivity RF noise measurement scheme to study small current fluctuations of mesoscopic systems at milliKelvin temperatures. The setup relies on the combination of an interferometric ampli- fication scheme and a quarter-wave impedance transformer, allowing the mea- surement of noise power spectral densities with GHz bandwith up to five orders of magnitude below the amplifier noise floor. We simultaneously measure the high frequency conductance of the sample by derivating a portion of the signal to a microwave homodyne detection. We describe the principle of the setup, as well as its implementation and calibration. Finally, we show that our setup allows to fully characterize a subnanosecond on-demand single electron source. More generally, its sensitivity and bandwith make it suitable for applications manipulating single charges at GHz frequencies.Comment: The following article has been submitted to Review of Scientific Instrument

    Solid state television camera system Patent

    Get PDF
    Solid state television camera system consisting of monolithic semiconductor mosaic sensor and molecular digital readout system
    • …
    corecore