95 research outputs found

    Optimal Scheduling in the Multiserver-job Model under Heavy Traffic

    Full text link
    Multiserver-job systems, where jobs require concurrent service at many servers, occur widely in practice. Essentially all of the theoretical work on multiserver-job systems focuses on maximizing utilization, with almost nothing known about mean response time. In simpler settings, such as various known-size single-server-job settings, minimizing mean response time is merely a matter of prioritizing small jobs. However, for the multiserver-job system, prioritizing small jobs is not enough, because we must also ensure servers are not unnecessarily left idle. Thus, minimizing mean response time requires prioritizing small jobs while simultaneously maximizing throughput. Our question is how to achieve these joint objectives. We devise the ServerFilling-SRPT scheduling policy, which is the first policy to minimize mean response time in the multiserver-job model in the heavy traffic limit. In addition to proving this heavy-traffic result, we present empirical evidence that ServerFilling-SRPT outperforms all existing scheduling policies for all loads, with improvements by orders of magnitude at higher loads. Because ServerFilling-SRPT requires knowing job sizes, we also define the ServerFilling-Gittins policy, which is optimal when sizes are unknown or partially known.Comment: 32 pages, to appear in ACM SIGMETRICS 202

    Discrete-Event Modeling of a High-Performance Computing Cluster with Service Rate Control

    Get PDF
    We present a stochastic recursion based discrete-event model of a high-performance computing cluster with service rate switching capabilities. The model is easily adopted to many common settings of modern supercomputers, such as specific scheduling disciplines and various control policies. We also provide some illustrative numerical experiments and discuss further generalizations of the model

    Performance of the Gittins Policy in the G/G/1 and G/G/k, With and Without Setup Times

    Full text link
    How should we schedule jobs to minimize mean queue length? In the preemptive M/G/1 queue, we know the optimal policy is the Gittins policy, which uses any available information about jobs' remaining service times to dynamically prioritize jobs. For models more complex than the M/G/1, optimal scheduling is generally intractable. This leads us to ask: beyond the M/G/1, does Gittins still perform well? Recent results indicate that Gittins performs well in the M/G/k, meaning that its additive suboptimality gap is bounded by an expression which is negligible in heavy traffic. But allowing multiple servers is just one way to extend the M/G/1, and most other extensions remain open. Does Gittins still perform well with non-Poisson arrival processes? Or if servers require setup times when transitioning from idle to busy? In this paper, we give the first analysis of the Gittins policy that can handle any combination of (a) multiple servers, (b) non-Poisson arrivals, and (c) setup times. Our results thus cover the G/G/1 and G/G/k, with and without setup times, bounding Gittins's suboptimality gap in each case. Each of (a), (b), and (c) adds a term to our bound, but all the terms are negligible in heavy traffic, thus implying Gittins's heavy-traffic optimality in all the systems we consider. Another consequence of our results is that Gittins is optimal in the M/G/1 with setup times at all loads.Comment: 41 page

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the Takács Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    Nested Fork-Join Queuing Networks and Their Application to Mobility Airfield Operations Analysis

    Get PDF
    A single-chain nested fork-join queuing network (FJQN) model of mobility airfield ground processing is proposed. In order to analyze the queuing network model, advances on two fronts are made. First, a general technique for decomposing nested FJQNs with probabilistic forks is proposed, which consists of incorporating feedback loops into the embedded Markov chain of the synchronization station, then using Marie\u27s Method to decompose the network. Numerical studies show this strategy to be effective, with less than two percent relative error in the approximate performance measures in most realistic cases. The second contribution is the identification of a quick, efficient method for solving for the stationary probabilities of the λn/Ck/r/N queue. Unpreconditioned Conjugate Gradient Squared is shown to be the method of choice in the context of decomposition using Marie\u27s Method, thus broadening the class of networks where the method is of practical use. The mobility airfield model is analyzed using the strategies described above, and accurate approximations of airfield performance measures are obtained in a fraction of the time needed for a simulation study. The proposed airfield modeling approach is especially effective for quick-look studies and sensitivity analysis

    Overlap Times in the GIB/GI/GI^B/GI/\infty Queue

    Full text link
    Overlap times have been studied as a way of understanding the time of interaction between customers in a service facility. Most of the previous analysis relies on the single jump assumption for arrivals, which implies the queue increases by one for each arrival epoch. In this paper, we relax the single arrival assumption and explore the impact of having batch arrivals. Unfortunately, with batch arrivals it is not clear how one measures an overlap time between batches of customers. Thus, we develop two ways of capturing the notion of an overlap time in a batch setting and derive exact results in the infinite server queue with batch arrivals. Finally, we derive new results for analyzing overlap times of more than two batches

    Scheduling for today’s computer systems: bridging theory and practice

    Get PDF
    Scheduling is a fundamental technique for improving performance in computer systems. From web servers to routers to operating systems, how the bottleneck device is scheduled has an enormous impact on the performance of the system as a whole. Given the immense literature studying scheduling, it is easy to think that we already understand enough about scheduling. But, modern computer system designs have highlighted a number of disconnects between traditional analytic results and the needs of system designers. In particular, the idealized policies, metrics, and models used by analytic researchers do not match the policies, metrics, and scenarios that appear in real systems. The goal of this thesis is to take a step towards modernizing the theory of scheduling in order to provide results that apply to today’s computer systems, and thus ease the burden on system designers. To accomplish this goal, we provide new results that help to bridge each of the disconnects mentioned above. We will move beyond the study of idealized policies by introducing a new analytic framework where the focus is on scheduling heuristics and techniques rather than individual policies. By moving beyond the study of individual policies, our results apply to the complex hybrid policies that are often used in practice. For example, our results enable designers to understand how the policies that favor small job sizes are affected by the fact that real systems only have estimates of job sizes. In addition, we move beyond the study of mean response time and provide results characterizing the distribution of response time and the fairness of scheduling policies. These results allow us to understand how scheduling affects QoS guarantees and whether favoring small job sizes results in large job sizes being treated unfairly. Finally, we move beyond the simplified models traditionally used in scheduling research and provide results characterizing the effectiveness of scheduling in multiserver systems and when users are interactive. These results allow us to answer questions about the how to design multiserver systems and how to choose a workload generator when evaluating new scheduling designs
    corecore