68,391 research outputs found

    Stability and Boundedness of Impulsive Systems with Time Delay

    Get PDF
    The stability and boundedness theories are developed for impulsive differential equations with time delay. Definitions, notations and fundamental theory are presented for delay differential systems with both fixed and state-dependent impulses. It is usually more difficult to investigate the qualitative properties of systems with state-dependent impulses since different solutions have different moments of impulses. In this thesis, the stability problems of nontrivial solutions of systems with state-dependent impulses are ``transferred" to those of the trivial solution of systems with fixed impulses by constructing the so-called ``reduced system". Therefore, it is enough to investigate the stability problems of systems with fixed impulses. The exponential stability problem is then discussed for the system with fixed impulses. A variety of stability criteria are obtained and`numerical examples are worked out to illustrate the results, which shows that impulses do contribute to the stabilization of some delay differential equations. To unify various stability concepts and to offer a general framework for the investigation of stability theory, the concept of stability in terms of two measures is introduced and then several stability criteria are developed for impulsive delay differential equations by both the single and multiple Lyapunov functions method. Furthermore, boundedness and periodicity results are discussed for impulsive differential systems with time delay. The Lyapunov-Razumikhin technique, the Lyapunov functional method, differential inequalities, the method of variation of parameters, and the partitioned matrix method are the main tools to obtain these results. Finally, the application of the stability theory to neural networks is presented. In applications, the impulses are considered as either means of impulsive control or perturbations.Sufficient conditions for stability and stabilization of neural networks are obtained

    Invariant Measures for Dissipative Dynamical Systems: Abstract Results and Applications

    Full text link
    In this work we study certain invariant measures that can be associated to the time averaged observation of a broad class of dissipative semigroups via the notion of a generalized Banach limit. Consider an arbitrary complete separable metric space XX which is acted on by any continuous semigroup {S(t)}t≥0\{S(t)\}_{t \geq 0}. Suppose that §(t)}t≥0\S(t)\}_{t \geq 0} possesses a global attractor A\mathcal{A}. We show that, for any generalized Banach limit LIMT→∞\underset{T \rightarrow \infty}{\rm{LIM}} and any distribution of initial conditions m0\mathfrak{m}_0, that there exists an invariant probability measure m\mathfrak{m}, whose support is contained in A\mathcal{A}, such that ∫Xϕ(x)dm(x)=LIMT→∞1T∫0T∫Xϕ(S(t)x)dm0(x)dt, \int_{X} \phi(x) d\mathfrak{m} (x) = \underset{T\to \infty}{\rm{LIM}} \frac{1}{T}\int_0^T \int_X \phi(S(t) x) d \mathfrak{m}_0(x) d t, for all observables ϕ\phi living in a suitable function space of continuous mappings on XX. This work is based on a functional analytic framework simplifying and generalizing previous works in this direction. In particular our results rely on the novel use of a general but elementary topological observation, valid in any metric space, which concerns the growth of continuous functions in the neighborhood of compact sets. In the case when {S(t)}t≥0\{S(t)\}_{t \geq 0} does not possess a compact absorbing set, this lemma allows us to sidestep the use of weak compactness arguments which require the imposition of cumbersome weak continuity conditions and limits the phase space XX to the case of a reflexive Banach space. Two examples of concrete dynamical systems where the semigroup is known to be non-compact are examined in detail.Comment: To appear in Communications in Mathematical Physic

    Statistical solutions of hyperbolic conservation laws I: Foundations

    Full text link
    We seek to define statistical solutions of hyperbolic systems of conservation laws as time-parametrized probability measures on pp-integrable functions. To do so, we prove the equivalence between probability measures on LpL^p spaces and infinite families of \textit{correlation measures}. Each member of this family, termed a \textit{correlation marginal}, is a Young measure on a finite-dimensional tensor product domain and provides information about multi-point correlations of the underlying integrable functions. We also prove that any probability measure on a LpL^p space is uniquely determined by certain moments (correlation functions) of the equivalent correlation measure. We utilize this equivalence to define statistical solutions of multi-dimensional conservation laws in terms of an infinite set of equations, each evolving a moment of the correlation marginal. These evolution equations can be interpreted as augmenting entropy measure-valued solutions, with additional information about the evolution of all possible multi-point correlation functions. Our concept of statistical solutions can accommodate uncertain initial data as well as possibly non-atomic solutions even for atomic initial data. For multi-dimensional scalar conservation laws we impose additional entropy conditions and prove that the resulting \textit{entropy statistical solutions} exist, are unique and are stable with respect to the 11-Wasserstein metric on probability measures on L1L^1

    Optimal linear stability condition for scalar differential equations with distributed delay

    Get PDF
    Linear scalar differential equations with distributed delays appear in the study of the local stability of nonlinear differential equations with feedback, which are common in biology and physics. Negative feedback loops tend to promote oscillations around steady states, and their stability depends on the particular shape of the delay distribution. Since in applications the mean delay is often the only reliable information available about the distribution, it is desirable to find conditions for stability that are independent from the shape of the distribution. We show here that for a given mean delay, the linear equation with distributed delay is asymptotically stable if the associated differential equation with a discrete delay is asymptotically stable. We illustrate this criterion on a compartment model of hematopoietic cell dynamics to obtain sufficient conditions for stability
    • …
    corecore