62 research outputs found

    An adaptive neuro-fuzzy controller for vibration suppression of a flexible structure in aerial refueling

    Get PDF
    Air-to-air refueling (AAR) has been commonly used in military jet applications. Recently, civilian applications of AAR have been garnering increased attention due to the high cost of air travel, which is largely dictated by the cost of jet fuel. There are two types of AAR approaches: probe-drogue and flying boom systems. This work explores the probe-drogue AAR system in commercial applications. Typical AAR applications deploy a drogue connected to a long flexible hose behind a moving aircraft tanker. The drogue is connected to a probe in a receiver aircraft before initiating fuel transfer and is retracted back into the tanker when the fuel transfer is completed. In order to ensure a safe and efficient refueling operation sophisticated systems need to be developed to accommodate the turbulences encountered, particularly in respect to vibration reduction of the flexible hose and drogue. The objective of this work is to develop a probe-drogue system for helicopter AAR applications. The first project is to make a preliminary design of a new AAR system for helicopter refuelling from a modified AT-802 tanker aircraft. [...

    Inverse kinematics solution for trajectory tracking using artificial neural networks for SCORBOT ER-4u

    Get PDF
    This paper presents the kinematic analysis of the SCORBOT-ER 4u robot arm using a Multi-Layered Feed-Forward (MLFF) Neural Network. The SCORBOT-ER 4u is a 5-DOF vertical articulated educational robot with revolute joints. The Denavit-Hartenberg and Geometrical methods are the forward kinematic algorithms used to generate data and train the neural network. The learning of forward-inverse mapping enables the inverse kinematic solution to be found. The algorithm is tested on hardware (SCORBOT-ER 4u) and reliable results are obtained. The modeling and simulations are done using MATLAB 8.0 software

    Emerging Trends in Mechatronics

    Get PDF
    Mechatronics is a multidisciplinary branch of engineering combining mechanical, electrical and electronics, control and automation, and computer engineering fields. The main research task of mechatronics is design, control, and optimization of advanced devices, products, and hybrid systems utilizing the concepts found in all these fields. The purpose of this special issue is to help better understand how mechatronics will impact on the practice and research of developing advanced techniques to model, control, and optimize complex systems. The special issue presents recent advances in mechatronics and related technologies. The selected topics give an overview of the state of the art and present new research results and prospects for the future development of the interdisciplinary field of mechatronic systems

    Multi-axial real-time hybrid simulation framework for testing nonlinear structure systems with multiple boundary interfaces

    Get PDF
    Hybrid simulation is a widely accepted laboratory testing approach that partitions a proposed structure into numerical and physical substructures, for a space- and cost-effective testing method. Structural elements that are expected to remain in the linear elastic range are usually modeled numerically, while computationally intractable nonlinear elements are tested physically. The loads and conditions at the boundaries between the numerical and physical substructures are imposed by servo-hydraulic actuators, with the responses measured by load cells and displacement transducers. Traditionally, these actuators impose boundary condition displacements at slow speeds, while damping and inertial components for the physical specimen are numerically calculated. This slow application of the boundary conditions neglects the rate-dependent behavior of the physical specimen. Real-time hybrid simulation (RTHS) is an alternative to slow speed hybrid simulation approach, where the responses of the numerical substructure are calculated and imposed on the physical substructure at real-world natural hazard excitation speeds. Damping, inertia, and rate-dependent material effects are incorporated in the physical substructure as a result of real-time testing. For a general substructure, the boundary interface has six degrees-of-freedom (DOF); therefore, an actuation system that can apply multi-axial loads is required. In these experiments, the boundary conditions at the interface between the physical and numerical substructures are imposed by two or more actuators. Significant dynamic coupling can be present between the actuators in such setups. Kinematic transformations are required for the operation of each actuator to achieve desired boundary conditions. Furthermore, each actuator possesses inherent dynamics that need appropriate compensation to ensure an accurate and stable operation. Most existing RTHS applications to date have involved the substructuring of the reference structures into numerical and physical components at a single interface with a one-DOF boundary condition and force imposed and measured. Multi-DOF boundary conditions have been explored in a few applications; however a general six-DOF stable implementation has never been achieved. A major research gap in the RTHS domain is the development of a multi-axial RTHS framework capable of handling six DOF boundary conditions and forces, as well as the presence of multiple physical specimens and numerical-to-physical interfaces. In this dissertation, a multi-axial real-time hybrid simulation (maRTHS) framework is developed for realistic nonlinear dynamic assessment of structures under natural hazard excitation. The framework is comprised of numerical and physical substructures, actuator-dynamics compensation, and kinematic transformations between Cartesian and actuator/transducer coordinates. The numerical substructure is compiled on a real-time embedded system, comprised of a microcontroller setup, with onboard memory and processing, that computes the response of finite element models of the structural system, which are then communicated with the hardware setup via the input-output peripherals. The physical substructure is composed of a multi-actuator boundary condition box, loadcells, displacement transducers, and one or more physical specimens. The proposed compensation is a model-based strategy based on the linearized identified models of individual actuators. The concepts of the model-based compensation approach are first validated in a shake table study, and then applied to single and multi-axis RTHS developments. The capabilities of the proposed maRTHS framework are demonstrated via the multi-axial load and boundary condition boxes (LBCBs) at the University of Illinois Urbana-Champaign, via two illustrative examples. First, the maRTHS algorithm including the decoupled controller, and kinematic transformation processes are validated. In this study, a moment frame structure is partitioned into numerical beam-column finite element model, and a physical column with an LBCB boundary condition. This experiment is comprised of six DOFs and excitation is only applied in the plane of the moment frame. Next, the maRTHS framework is subjected to a more sophisticated testing environment involving a multi-span curved bridge structure. In this second example, two LBCBs are utilized for testing of two physical piers, and excitation is applied bi-directionally. Results from the illustrative examples are verified against numerical simulations. The results demonstrate the accuracy and promising nature of the proposed state-of-the-art framework for maRTHS for nonlinear dynamic testing of structural systems using multiple boundary points

    Multi-axial Real-time Hybrid Simulation Framework for Testing Nonlinear Structural Systems with Multiple Boundary Interfaces

    Get PDF
    Hybrid simulation is a widely accepted laboratory testing approach that partitions a proposed structure into numerical and physical substructures, for a space- and cost-effective testing method. Structural elements that are expected to remain in the linear elastic range are usually modeled numerically, while computationally intractable nonlinear elements are tested physically. The loads and conditions at the boundaries between the numerical and physical substructures are imposed by servo-hydraulic actuators, with the responses measured by loadcells and displacement transducers. Traditionally, these actuators impose boundary condition displacements at slow speeds, while damping and inertial components for the physical specimen are numerically calculated. This slow application of the boundary conditions neglects rate-dependent behavior of the physical specimen. Real-time hybrid simulation (RTHS) is an alternative to slow speed hybrid simulation approach, where the responses of numerical substructure are calculated and imposed on the physical substructure at real world natural hazard excitation speeds. Damping, inertia, and rate-dependent material effects are incorporated in the physical substructure as a result of real-time testing. For a general substructure, the boundary interface has six degrees-of-freedom (DOF); therefore, an actuation system that can apply multi-axial loads is required. In these experiments, the boundary conditions at the interface between the physical and numerical substructures are imposed by two or more actuators. Significant dynamic coupling can be present between the actuators in such setups. Kinematic transformations are required for operation of each actuator to achieve desired boundary conditions. Furthermore, each actuator possesses inherent dynamics that needs appropriate compensation to ensure an accurate and stable operation. Most existing RTHS applications to date have involved the substructuring of the reference structures into numerical and physical components at a single interface with a one-DOF boundary condition and force imposed and measured. Multi-DOF boundary conditions have been explored in a few applications, however a general six-DOF stable implementation has never been achieved. A major research gap in the RTHS domain is the development of a multi-axial RTHS framework capable of handling six DOF boundary conditions and forces, as well as presence of multiple physical specimens and numerical-to-physical interfaces. In this dissertation, a multi-axial real-time hybrid simulation (maRTHS) framework is developed for realistic nonlinear dynamic assessment of structures under natural hazard excitation. The framework is comprised of numerical and physical substructures, actuator-dynamics compensation, and kinematic transformations between Cartesian and actuator/transducer coordinates. The numerical substructure is compiled on a real-time embedded system, comprised of a microcontroller setup, with onboard memory and processing, that computes the response of finite element models of the structural system, which are then communicated with the hardware setup via the input-output peripherals. The physical substructure is composed of a multi-actuator boundary condition box, loadcells, displacement transducers, and one or more physical specimens. The proposed compensation is a model-based strategy based on the linearized identified models of individual actuators. The concepts of the model-based compensation approach are first validated in a shake table study, and then applied to single and multi-axis RTHS developments. The capabilities of the proposed maRTHS framework are demonstrated via the multi-axial load and boundary condition boxes (LBCBs) at the University of Illinois Urbana-Champaign, via two illustrative examples. First, the maRTHS algorithm including the decoupled controller, and kinematic transformation processes are validated. In this study, a moment frame structure is partitioned into numerical beam-column finite element model, and a physical column with an LBCB boundary condition. This experiment is comprised of six DOFs and excitation is only applied in the plane of the moment frame. Next, the maRTHS framework is subjected to a more sophisticated testing environment involving a multi-span curved bridge structure. In this second example, two LBCBs are utilized for testing of two physical piers, and excitation is applied bi-directionally. Results from the illustrative examples are verified against numerical simulations. The results demonstrate the accuracy and promising nature of the proposed state-of-the-art framework for maRTHS for nonlinear dynamic testing of structural systems using multiple boundary points.Ope

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective

    Final Closeout Report University Research Program in Robotics for Environmental Restoration and Waste Management

    Full text link

    Limited Bandwidth Wireless Communication Strategies for Structural Control of Seismically Excited Shear Structures

    Get PDF
    Structural control is used to mitigate unwanted vibrations in structures when large excitations occur, such as high winds and earthquakes. To increase reliability and controllability in structural control applications, engineers are making use of semi-active control devices. Semi-active control gives engineers greater control authority over structural response versus passive controllers, but are less expensive and more reliable than active devices. However, the large numbers of actuators required for semi-active structural control networks introduce more cabling within control systems leading to increased cost. Researchers are exploring the use of wireless technology for structural control to cut down on the installation cost associated with cabling. However wireless communication latency (time delays in data transmissions) can be a barrier to full acceptance of wireless technology for structural control. As the number of sensors in a control network grows, it becomes increasingly difficult to transmit all sensor data during a single control step over the fixed wireless bandwidth. Because control force calculations rely on accurate state measurements or estimates, the use of strategic bandwidth allocation becomes more necessary to provide good control performance. The traditional method for speeding up the control step in larger wireless networks is to spatially decentralize the network into multiple subnetworks, sacrificing communication for speed. This dissertation seeks to provide an additional approach to address the issue of communication latency that may be an alternative, or even a supplement, to spatial decentralization of the control network. The proposed approach is to use temporal decentralization, or the decentralization of the control network over time, as opposed to space/location. Temporal decentralization is first presented with a means of selecting and evaluating different communication group sizes and wireless unit combinations for staggered temporal group communication that still provide highly accurate state estimates. It is found that, in staggered communication schemes, state estimation and control performance are affected by the network topology used at each time step with some sensor combinations providing more useful information than others. Sensor placement theory is used to form sensor groups that provide consistently high-quality output information to the network during each time step, but still utilize all sensors. If the demand for sensors to communicate data outweighs the available bandwidth, traditional temporal and spatial approaches are no longer feasible. This dissertation examines and validates a dynamic approach for bandwidth allocation relying on an extended, autonomous and controller-aware, carrier sense multiple access with collision detection (CSMA/CD) protocol. Stochastic parameters are derived to strategically alter back-off times in the CSMA/CD algorithm based on nodal observability and output estimation error. Inspired by data fusion approaches, this second study presents two different methods for neighborhood state estimation using a dynamic form of measurement-only fusion. To validate these wireless structural control approaches, a small-scale experimental semi-active structural control testbed is developed that captures the important attributes of a full-scale structure

    Adaptive Tracking Controller for Real-Time Hybrid Simulation

    Get PDF
    Real-time hybrid simulation (RTHS) is a versatile and cost-effective testing method for studying the performance of structures subjected to dynamic loading. RTHS decomposes a structure into partitioned physical and numerical sub-structures that are coupled together through actuation systems. The sub-structuring approach is particularly attractive for studying large-scale problems since it allows for setting up large-scale structures with thousands of degrees of freedom in numerical simulations while specific components can be studied experimentally.The actuator dynamics generate an inevitable time delay in the overall system that affects the accuracy and stability of the simulation. Therefore, developing robust tracking control methodologies are necessary to mitigate these adverse effects. This research presents a state of the art review of tracking controllers for RTHS, and proposes a Conditional Adaptive Time Series (CATS) compensator based on the principles of the Adaptive Time Series compensator (ATS). The accuracy of the proposed controller is evaluated with a benchmark problem of a three-story building with a single degree of freedom (SDOF) in a realistic virtual RTHS (vRTHS). In addition, the accuracy of the proposed method is evaluated for seven numerical integration algorithms suitable for RTHS

    Actuators for Intelligent Electric Vehicles

    Get PDF
    This book details the advanced actuators for IEVs and the control algorithm design. In the actuator design, the configuration four-wheel independent drive/steering electric vehicles is reviewed. An in-wheel two-speed AMT with selectable one-way clutch is designed for IEV. Considering uncertainties, the optimization design for the planetary gear train of IEV is conducted. An electric power steering system is designed for IEV. In addition, advanced control algorithms are proposed in favour of active safety improvement. A supervision mechanism is applied to the segment drift control of autonomous driving. Double super-resolution network is used to design the intelligent driving algorithm. Torque distribution control technology and four-wheel steering technology are utilized for path tracking and adaptive cruise control. To advance the control accuracy, advanced estimation algorithms are studied in this book. The tyre-road peak friction coefficient under full slip rate range is identified based on the normalized tyre model. The pressure of the electro-hydraulic brake system is estimated based on signal fusion. Besides, a multi-semantic driver behaviour recognition model of autonomous vehicles is designed using confidence fusion mechanism. Moreover, a mono-vision based lateral localization system of low-cost autonomous vehicles is proposed with deep learning curb detection. To sum up, the discussed advanced actuators, control and estimation algorithms are beneficial to the active safety improvement of IEVs
    corecore