1,783 research outputs found

    Stability conditions for the non-linear McKendrick equations

    Get PDF
    Non-linear McKendrick equation with age-dependent mortality and fertility is considered. The author [Appl. Math. Comput. 131 (1) (2002) 107] deduced the characteristic equation whose roots determine the stability. We are able to give sufficient conditions for the stability of the stationary solutions of the system in some cases

    A Recipe for State Dependent Distributed Delay Differential Equations

    Full text link
    We use the McKendrick equation with variable ageing rate and randomly distributed maturation time to derive a state dependent distributed delay differential equation. We show that the resulting delay differential equation preserves non-negativity of initial conditions and we characterise local stability of equilibria. By specifying the distribution of maturation age, we recover state dependent discrete, uniform and gamma distributed delay differential equations. We show how to reduce the uniform case to a system of state dependent discrete delay equations and the gamma distributed case to a system of ordinary differential equations. To illustrate the benefits of these reductions, we convert previously published transit compartment models into equivalent distributed delay differential equations.Comment: 28 page

    A jump-growth model for predator-prey dynamics: derivation and application to marine ecosystems

    Full text link
    This paper investigates the dynamics of biomass in a marine ecosystem. A stochastic process is defined in which organisms undergo jumps in body size as they catch and eat smaller organisms. Using a systematic expansion of the master equation, we derive a deterministic equation for the macroscopic dynamics, which we call the deterministic jump-growth equation, and a linear Fokker-Planck equation for the stochastic fluctuations. The McKendrick--von Foerster equation, used in previous studies, is shown to be a first-order approximation, appropriate in equilibrium systems where predators are much larger than their prey. The model has a power-law steady state consistent with the approximate constancy of mass density in logarithmic intervals of body mass often observed in marine ecosystems. The behaviours of the stochastic process, the deterministic jump-growth equation and the McKendrick--von Foerster equation are compared using numerical methods. The numerical analysis shows two classes of attractors: steady states and travelling waves.Comment: 27 pages, 4 figures. Final version as published. Only minor change

    Transit times and mean ages for nonautonomous and autonomous compartmental systems

    Get PDF
    We develop a theory for transit times and mean ages for nonautonomous compartmental systems. Using the McKendrick-von F\"orster equation, we show that the mean ages of mass in a compartmental system satisfy a linear nonautonomous ordinary differential equation that is exponentially stable. We then define a nonautonomous version of transit time as the mean age of mass leaving the compartmental system at a particular time and show that our nonautonomous theory generalises the autonomous case. We apply these results to study a nine-dimensional nonautonomous compartmental system modeling the terrestrial carbon cycle, which is a modification of the Carnegie-Ames-Stanford approach (CASA) model, and we demonstrate that the nonautonomous versions of transit time and mean age differ significantly from the autonomous quantities when calculated for that model
    • …
    corecore