1,621 research outputs found

    A parameter uniform fitted mesh method for a weakly coupled system of two singularly perturbed convection-diffusion equations

    Get PDF
    In this paper, a boundary value problem for a singularly perturbed linear system of two second order ordinary differential equations of convection- diffusion type is considered on the interval [0, 1]. The components of the solution of this system exhibit boundary layers at 0. A numerical method composed of an upwind finite difference scheme applied on a piecewise uniform Shishkin mesh is suggested to solve the problem. The method is proved to be first order convergent in the maximum norm uniformly in the perturbation parameters. Numerical examples are provided in support of the theory

    Asymptotic Expansions for Stationary Distributions of Perturbed Semi-Markov Processes

    Full text link
    New algorithms for computing of asymptotic expansions for stationary distributions of nonlinearly perturbed semi-Markov processes are presented. The algorithms are based on special techniques of sequential phase space reduction, which can be applied to processes with asymptotically coupled and uncoupled finite phase spaces.Comment: 83 page

    Second order parameter-uniform convergence for a finite difference method for a singularly perturbed linear reaction-diffusion system

    Get PDF
    A singularly perturbed linear system of second order ordinary differential equations of reaction-diffusion type with given boundary conditions is considered. The leading term of each equation is multiplied by a small positive parameter. These singular perturbation parameters are assumed to be distinct. The components of the solution exhibit overlapping layers. Shishkin piecewise-uniform meshes are introduced, which are used in conjunction with a classical finite difference discretisation, to construct a numerical method for solving this problem. It is proved that the numerical approximations obtained with this method is essentially second order convergent uniformly with respect to all of the parameters

    Stability analysis of a general class of singularly perturbed linear hybrid systems

    Full text link
    Motivated by a real problem in steel production, we introduce and analyze a general class of singularly perturbed linear hybrid systems with both switches and impulses, in which the slow or fast nature of the variables can be mode-dependent. This means that, at switching instants, some of the slow variables can become fast and vice-versa. Firstly, we show that using a mode-dependent variable reordering we can rewrite this class of systems in a form in which the variables preserve their nature over time. Secondly, we establish, through singular perturbation techniques, an upper bound on the minimum dwell-time ensuring the overall system's stability. Remarkably, this bound is the sum of two terms. The first term corresponds to an upper bound on the minimum dwell-time ensuring the stability of the reduced order linear hybrid system describing the slow dynamics. The order of magnitude of the second term is determined by that of the parameter defining the ratio between the two time-scales of the singularly perturbed system. We show that the proposed framework can also take into account the change of dimension of the state vector at switching instants. Numerical illustrations complete our study

    A Numerical Slow Manifold Approach to Model Reduction for Optimal Control of Multiple Time Scale ODE

    Full text link
    Time scale separation is a natural property of many control systems that can be ex- ploited, theoretically and numerically. We present a numerical scheme to solve optimal control problems with considerable time scale separation that is based on a model reduction approach that does not need the system to be explicitly stated in singularly perturbed form. We present examples that highlight the advantages and disadvantages of the method
    corecore