56,502 research outputs found

    Delay-dependent stabilization of stochastic interval delay systems with nonlinear disturbances

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Elsevier Ltd.In this paper, a delay-dependent approach is developed to deal with the robust stabilization problem for a class of stochastic time-delay interval systems with nonlinear disturbances. The system matrices are assumed to be uncertain within given intervals, the time delays appear in both the system states and the nonlinear disturbances, and the stochastic perturbation is in the form of a Brownian motion. The purpose of the addressed stochastic stabilization problem is to design a memoryless state feedback controller such that, for all admissible interval uncertainties and nonlinear disturbances, the closed-loop system is asymptotically stable in the mean square, where the stability criteria are dependent on the length of the time delay and therefore less conservative. By using Itô's differential formula and the Lyapunov stability theory, sufficient conditions are first derived for ensuring the stability of the stochastic interval delay systems. Then, the controller gain is characterized in terms of the solution to a delay-dependent linear matrix inequality (LMI), which can be easily solved by using available software packages. A numerical example is exploited to demonstrate the effectiveness of the proposed design procedure.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of Germany

    Stability and Boundedness of Impulsive Systems with Time Delay

    Get PDF
    The stability and boundedness theories are developed for impulsive differential equations with time delay. Definitions, notations and fundamental theory are presented for delay differential systems with both fixed and state-dependent impulses. It is usually more difficult to investigate the qualitative properties of systems with state-dependent impulses since different solutions have different moments of impulses. In this thesis, the stability problems of nontrivial solutions of systems with state-dependent impulses are ``transferred" to those of the trivial solution of systems with fixed impulses by constructing the so-called ``reduced system". Therefore, it is enough to investigate the stability problems of systems with fixed impulses. The exponential stability problem is then discussed for the system with fixed impulses. A variety of stability criteria are obtained and`numerical examples are worked out to illustrate the results, which shows that impulses do contribute to the stabilization of some delay differential equations. To unify various stability concepts and to offer a general framework for the investigation of stability theory, the concept of stability in terms of two measures is introduced and then several stability criteria are developed for impulsive delay differential equations by both the single and multiple Lyapunov functions method. Furthermore, boundedness and periodicity results are discussed for impulsive differential systems with time delay. The Lyapunov-Razumikhin technique, the Lyapunov functional method, differential inequalities, the method of variation of parameters, and the partitioned matrix method are the main tools to obtain these results. Finally, the application of the stability theory to neural networks is presented. In applications, the impulses are considered as either means of impulsive control or perturbations.Sufficient conditions for stability and stabilization of neural networks are obtained

    Impulsive stabilization of stochastic functional differential equations

    Get PDF
    AbstractThis paper investigates impulsive stabilization of stochastic delay differential equations. Both moment and almost sure exponential stability criteria are established using the Lyapunov–Razumikhin method. It is shown that an unstable stochastic delay system can be successfully stabilized by impulses. The results can be easily applied to stochastic systems with arbitrarily large delays. An example with its numerical simulation is presented to illustrate the main results

    Stability and stabilization of fractional order time delay systems

    Get PDF
    U ovom radu predstavljeni su neki osnovni rezultati koji se odnose na kriterijume stabilnosti sistema necelobrojnog reda sa kašnjenjem kao i za sisteme necelobrojnog reda bez kašnjenja.Takođe, dobijeni su i predstavljeni dovoljni uslovi za konačnom vremenskom stabilnost i stabilizacija za (ne)linearne (ne)homogene kao i za perturbovane sisteme necelobrojnog reda sa vremenskim kašnjenjem. Nekoliko kriterijuma stabilnosti za ovu klasu sistema necelobrojnog reda je predloženo korišćenjem nedavno dobijene generalizovane Gronval nejednakosti, kao i 'klasične' Belman-Gronval nejednakosti. Neki zaključci koji se odnose na stabilnost sistema necelobrojnog reda su slični onima koji se odnose na klasične sisteme celobrojnog reda. Na kraju, numerički primer je dat u cilju ilustracije značaja predloženog postupka.In this paper, some basic results of the stability criteria of fractional order system with time delay as well as free delay are presented. Also, we obtained and presented sufficient conditions for finite time stability and stabilization for (non)linear (non)homogeneous as well as perturbed fractional order time delay systems. Several stability criteria for this class of fractional order systems are proposed using a recently suggested generalized Gronwall inequality as well as 'classical' Bellman-Gronwall inequality. Some conclusions for stability are similar to those of classical integerorder differential equations. Finally, a numerical example is given to illustrate the validity of the proposed procedure

    Robust Compensation of Delay and Diffusive Actuator Dynamics Without Distributed Feedback

    Full text link
    [EN] This paper deals with robust observer-based output-feedback stabilization of systems whose actuator dynamics can be described in terms of partial differential equations (PDEs). More specifically, delay dynamics (first-order hyperbolic PDE) and diffusive dynamics (parabolic PDE) are considered. The proposed controllers have a PDE observer-based structure. The main novelty is that stabilization for an arbitrarily large delay or diffusion domain length is achieved, while distributed integral terms in the control law are avoided. The exponential stability of the closed loop in both cases is proved using Lyapunov functionals, even in the presence of small uncertainties in the time delay or the diffusion coefficient. The feasibility of this approach is illustrated in simulations using a second-order plant with an exponentially unstable mode.This work was supported in part by Project TIN2017-86520-C3-1-R, Ministerio de Economia y Competitividad, in part by the 16/17 UPV Mobility Award, and in part by the FPI-UPV 2014 Ph.D. Grant, Universitat Politecnica de Valencia, Spain.Sanz Diaz, R.; García Gil, PJ.; Krstic, M. (2019). Robust Compensation of Delay and Diffusive Actuator Dynamics Without Distributed Feedback. IEEE Transactions on Automatic Control. 64(9):3663-3675. https://doi.org/10.1109/TAC.2018.2887148S3663367564

    Delay-dependent exponential stability of neutral stochastic delay systems (vol 54, pg 147, 2009)

    Get PDF
    In the above titled paper originally published in vol. 54, no. 1, pp. 147-152) of IEEE Transactions on Automatic Control, there were some typographical errors in inequalities. Corrections are presented here

    Time-delayed feedback control of unstable periodic orbits near a subcritical Hopf bifurcation

    Full text link
    We show that Pyragas delayed feedback control can stabilize an unstable periodic orbit (UPO) that arises from a generic subcritical Hopf bifurcation of a stable equilibrium in an n-dimensional dynamical system. This extends results of Fiedler et al. [PRL 98, 114101 (2007)], who demonstrated that such feedback control can stabilize the UPO associated with a two-dimensional subcritical Hopf normal form. Pyragas feedback requires an appropriate choice of a feedback gain matrix for stabilization, as well as knowledge of the period of the targeted UPO. We apply feedback in the directions tangent to the two-dimensional center manifold. We parameterize the feedback gain by a modulus and a phase angle, and give explicit formulae for choosing these two parameters given the period of the UPO in a neighborhood of the bifurcation point. We show, first heuristically, and then rigorously by a center manifold reduction for delay differential equations, that the stabilization mechanism involves a highly degenerate Hopf bifurcation problem that is induced by the time-delayed feedback. When the feedback gain modulus reaches a threshold for stabilization, both of the genericity assumptions associated with a two-dimensional Hopf bifurcation are violated: the eigenvalues of the linearized problem do not cross the imaginary axis as the bifurcation parameter is varied, and the real part of the cubic coefficient of the normal form vanishes. Our analysis of this degenerate bifurcation problem reveals two qualitatively distinct cases when unfolded in a two-parameter plane. In each case, Pyragas-type feedback successfully stabilizes the branch of small-amplitude UPOs in a neighborhood of the original bifurcation point, provided that the phase angle satisfies a certain restriction.Comment: 35 pages, 19 figure

    Variable-delay feedback control of unstable steady states in retarded time-delayed systems

    Full text link
    We study the stability of unstable steady states in scalar retarded time-delayed systems subjected to a variable-delay feedback control. The important aspect of such a control problem is that time-delayed systems are already infinite-dimensional before the delayed feedback control is turned on. When the frequency of the modulation is large compared to the system's dynamics, the analytic approach consists of relating the stability properties of the resulting variable-delay system with those of an analogous distributed delay system. Otherwise, the stability domains are obtained by a numerical integration of the linearized variable-delay system. The analysis shows that the control domains are significantly larger than those in the usual time-delayed feedback control, and that the complexity of the domain structure depends on the form and the frequency of the delay modulation.Comment: 13 pages, 8 figures, RevTeX, accepted for publication in Physical Review
    corecore