794 research outputs found

    On passivity and passification of stochastic fuzzy systems with delays: The discrete-time case

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.Takagi–Sugeno (T-S) fuzzy models, which are usually represented by a set of linear submodels, can be used to describe or approximate any complex nonlinear systems by fuzzily blending these subsystems, and so, significant research efforts have been devoted to the analysis of such models. This paper is concerned with the passivity and passification problems of the stochastic discrete-time T-S fuzzy systems with delay. We first propose the definition of passivity in the sense of expectation. Then, by utilizing the Lyapunov functional method, the stochastic analysis combined with the matrix inequality techniques, a sufficient condition in terms of linear matrix inequalities is presented, ensuring the passivity performance of the T-S fuzzy models. Finally, based on this criterion, state feedback controller is designed, and several criteria are obtained to make the closed-loop system passive in the sense of expectation. The results acquired in this paper are delay dependent in the sense that they depend on not only the lower bound but also the upper bound of the time-varying delay. Numerical examples are also provided to demonstrate the effectiveness and feasibility of our criteria.This work was supported in part by the Royal Society Sino–British Fellowship Trust Award of the U.K., by the National Natural Science Foundation of China under Grant 60804028, by the Specialized Research Fund for the Doctoral Program of Higher Education for New Teachers in China under Grant 200802861044, and by the Teaching and Research Fund for Excellent Young Teachers at Southeast University of China

    H

    Get PDF
    This paper investigates the problem of H∞ filtering for class discrete-time Lipschitz nonlinear singular systems with measurement quantization. Assume that the system measurement output is quantized by a static, memoryless, and logarithmic quantizer before it is transmitted to the filter, while the quantizer errors can be treated as sector-bound uncertainties. The attention of this paper is focused on the design of a nonlinear quantized H∞ filter to mitigate quantization effects and ensure that the filtering error system is admissible (asymptotically stable, regular, and causal), while having a unique solution with a prescribed H∞ noise attenuation level. By introducing some slack variables and using the Lyapunov stability theory, some sufficient conditions for the existence of the nonlinear quantized H∞ filter are expressed in terms of linear matrix inequalities (LMIs). Finally, a numerical example is presented to demonstrate the effectiveness of the proposed quantized filter design method

    Stability and stabilization of delayed T-S fuzzy systems: A delay partitioning approach

    Get PDF
    This paper proposes a new approach, namely, the delay partitioning approach, to solving the problems of stability analysis and stabilization for continuous time-delay Takagi-Sugeno fuzzy systems. Based on the idea of delay fractioning, a new method is proposed for the delay-dependent stability analysis of fuzzy time-delay systems. Due to the instrumental idea of delay partitioning, the proposed stability condition is much less conservative than most of the existing results. The conservatism reduction becomes more obvious with the partitioning getting thinner. Based on this, the problem of stabilization via the so-called parallel distributed compensation scheme is also solved. Both the stability and stabilization results are further extended to time-delay fuzzy systems with time-varying parameter uncertainties. All the results are formulated in the form of linear matrix inequalities (LMIs), which can be readily solved via standard numerical software. The advantage of the results proposed in this paper lies in their reduced conservatism, as shown via detailed illustrative examples. The idea of delay partitioning is well demonstrated to be efficient for conservatism reduction and could be extended to solving other problems related to fuzzy delay systems. © 2009 IEEE.published_or_final_versio
    corecore