73 research outputs found

    Learning for Advanced Motion Control

    Full text link
    Iterative Learning Control (ILC) can achieve perfect tracking performance for mechatronic systems. The aim of this paper is to present an ILC design tutorial for industrial mechatronic systems. First, a preliminary analysis reveals the potential performance improvement of ILC prior to its actual implementation. Second, a frequency domain approach is presented, where fast learning is achieved through noncausal model inversion, and safe and robust learning is achieved by employing a contraction mapping theorem in conjunction with nonparametric frequency response functions. The approach is demonstrated on a desktop printer. Finally, a detailed analysis of industrial motion systems leads to several shortcomings that obstruct the widespread implementation of ILC algorithms. An overview of recently developed algorithms, including extensions using machine learning algorithms, is outlined that are aimed to facilitate broad industrial deployment.Comment: 8 pages, 15 figures, IEEE 16th International Workshop on Advanced Motion Control, 202

    From Fixed-Order Gain-Scheduling to Fixed-Structure LPV Controller Design

    Get PDF
    This thesis focuses on the development of some fixed-order controller design methods in the gain-scheduling/Linear Parameter Varying (LPV) framework. Gain-scheduled controllers designed using frequency-domain Single Input Single Output (SISO) models are considered first, followed by LPV controller design in the SISO transfer function setting and, finally, by Multiple Input Multiple Output (MIMO) LPV controller design in the state-space setting. In addition to the guarantee of closed-loop stability, each of the methods optimizes some classical performance measure, such as the H∞\mathscr{H}_\infty or H2\mathscr{H}_2 performance metrics. In the LPV state-space setting, the practical assumption of bounded scheduling parameter variations is taken into account in order to allow a higher performance level to be achieved. The fixed-order gain-scheduled controller design method is based on frequency-domain models dependent on the scheduling parameters. Based on the linearly parameterized gain-scheduled controllers and desired open-loop transfer functions, the H∞\mathscr{H}_\infty performance of the weighted closed-loop transfer functions is presented in the Nyquist diagram as a set of convex constraints. No a posteriori interpolation is needed, so the stability and performance level are guaranteed for all values of scheduling parameters considered in the design. Controllers designed with this method are successfully applied to the international benchmark in adaptive regulation. These low-order controllers ensure good rejection of the multisinusoidal disturbance with time-varying frequencies on the active suspension testbed. One issue related to the gain-scheduled controller design using the frequency response model is the computational burden due to the constraint sampling in the frequency domain. The other is a guarantee of stability and performance for all the values of scheduling parameters, not just those treated in design. To overcome these issues, a method for the design of fixed-order LPV controllers with the transfer function representation is proposed. The LPV controller parameterization considered in this approach leads to design variables in both the numerator and denominator of the controller. Stability and H∞\mathscr{H}_\infty performance conditions for all fixed values of scheduling parameters are presented in terms of Linear Matrix Inequalities (LMIs). With a problem of rejection of a multisinusoidal disturbance with time-varying frequencies in mind, LPV controller is designed for an LTI plant with a transfer function model. The extension of these methods from SISO to MIMO systems is far from trivial. The state-space setting is used for this reason, as there the transition from SISO to MIMO systems is natural. A method for fixed-order output-feedback LPV controller design for continuous-time state-space LPV plants with affine dependence on scheduling parameters is proposed. Bounds on the scheduling parameters and their variation rates are exploited in design through the use of affine Parameter Dependent Lyapunov Functions (PDLFs). The exponential decay rate, induced L2\mathscr{L}_2-norm and H2\mathscr{H}_2 performance constraints are expressed through a set of LMIs. The proposed method is applied to the 2DOF gyroscope experimental setup. In practice control is performed using digital computers, so some effort needs to be put into the LPV controller discretization. If the discrete-time LPV model of the system is available [...

    An LMI approach to Mixed H_∞/H_- fault detection observer design for linear fractional-order systems

    Get PDF
    This study deals with the problem of robust fault detection for linear time-invariant fractional-order systems (FOSs) assumed to be affected by sensor, actuator and process faults as well as disturbances. The observer-based method was employed to solve the problem, where the detector is an observer. The problem was transformed into the mixed  robust optimization problem to make the system disturbance-resistant on one hand and fault-sensitive on the other hand. Then, sufficient conditions were obtained to solve the problem in the linear matrix inequality (LMI) mode. Finally, the effectiveness and superiority of the method were demonstrated by simulating the solutions on a single-input multi-output thermal testing bench

    Recent Advances in Robust Control

    Get PDF
    Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics

    Structure-Preserving Model Reduction of Physical Network Systems

    Get PDF
    This paper considers physical network systems where the energy storage is naturally associated to the nodes of the graph, while the edges of the graph correspond to static couplings. The first sections deal with the linear case, covering examples such as mass-damper and hydraulic systems, which have a structure that is similar to symmetric consensus dynamics. The last section is concerned with a specific class of nonlinear physical network systems; namely detailed-balanced chemical reaction networks governed by mass action kinetics. In both cases, linear and nonlinear, the structure of the dynamics is similar, and is based on a weighted Laplacian matrix, together with an energy function capturing the energy storage at the nodes. We discuss two methods for structure-preserving model reduction. The first one is clustering; aggregating the nodes of the underlying graph to obtain a reduced graph. The second approach is based on neglecting the energy storage at some of the nodes, and subsequently eliminating those nodes (called Kron reduction).</p
    • …
    corecore