38 research outputs found

    Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen : 04. bis 06.07. 2012, Bauhaus-Universität Weimar

    Get PDF
    The 19th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 4th till 6th July 2012. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference. We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference

    Spectral Optimization Problems Controlling Wave Phenomena

    Get PDF
    Design problems seek a material arrangement or shape which fully harnesses the physical properties of the material(s) to create an environment in which a particular phenomena is most (or least) pronounced. Mathematically, design problems are formulated as PDE-constrained optimization problems to find the material arrangement that maximizes an objective function which expresses the desired behavior. The PDE constraint describes the relationship between the material and the phenomena of interest. The focus of this thesis is four design problems where the PDE constraint is a time-independent wave equation and the objective function governs some aspect of wave motion. We consider the shape optimization of functions of Dirichlet-Laplacian eigenvalues associated with the set of star-shaped, symmetric, bounded planar regions with smooth boundary. The boundary of such a region is represented using a Fourier-cosine series and the optimization problem is solved numerically using a quasi-Newton method. The method is applied to maximizing two particular nonsmooth functions of the eigenvalues: (a) the ratio of the n-th to first eigenvalues and (b) the ratio of the n-th eigenvalue gap to first eigenvalue. Both are generalizations of the Payne-Pólya-Weinberger ratio. The optimal values of these ratios and regions for which they are attained, for n ≤ 13, are presented and interpreted as a study of the range of the Dirichlet-Laplacian eigenvalues. For both spectral functions and each n, the optimal region has multiplicity two n-th eigenvalue. We consider a system governed by the wave equation with index of refraction n(x), taken to be variable within a bounded region of d-dimensional space and constant outside. The solution of the time-dependent wave equation with spatially-localized initial data spreads and decays with advancing time. The rate of spatially localized energy decay can be measured in terms of the eigenvalues of the scattering resonance problem, a non-selfadjoint eigenvalue problem consisting of the time-harmonic wave (Helmholtz) equation with outgoing radiation condition at infinity. Specifically, the rate of energy escape is governed by the complex scattering eigenfrequency which is closest to the real axis. We study the structural design problem: Find a refractive index profile n* within an admissible class which has a scattering frequency with minimal imaginary part. The admissible class is defined in terms of the compact support of n(x)-1 and pointwise upper and lower (material) bounds on n(x): 0 < n- ≤ n(x) ≤ n+ < ∞. We formulate this problem as a constrained optimization problem and prove that an optimal structure, n* exists. Furthermore, n*(x) is piecewise constant and achieves the material bounds, i.e., n*(x) is n- or n+ almost everywhere. In one dimension, we establish a connection between n*(x) and the well-known class of Bragg structures, where n(x) is constant on intervals whose length is one-quarter of the effective wavelength. Consider a system governed by the time-dependent Schroedinger equation in its ground state. When subjected to weak parametric forcing by an "ionizing field" (time-varying), the state decays with advancing time due to coupling of the bound state to radiation modes. The decay-rate of this metastable state is governed by Fermi's Golden Rule (FGR), which depends on the potential V and the details of the forcing. We pose the potential design problem: find V* which minimizes FGR (maximizes the lifetime of the state) over an admissible class of potentials with fixed spatial support. We formulate this problem as a constrained optimization problem and prove that an admissible optimal solution exists. Then, using quasi-Newton methods, we compute locally optimal potentials. These have the structure of a truncated periodic potential with a localized defect. In contrast to optimal structures for other spectral optimization problems, the optimizing potentials appear to be interior points of the constraint set and to be smooth. The multi-scale structures that emerge incorporate the physical mechanisms of energy confinement via material contrast and interference effects. An analysis of locally optimal potentials reveals local optimality is attained via two mechanisms: (i) decreasing the density of states near a resonant frequency in the continuum and (ii) tuning the oscillations of extended states to make FGR, an oscillatory integral, small. Finally, we explore the performance of optimal potentials via simulations of the time-evolution. We consider a general class of two-dimensional passive propagation media, represented as a planar graph where nodes are capacitors connected to a common ground and edges are inductors. Capacitances and inductances are fixed in time but vary in space. Kirchhoff's laws give the time dynamics of voltage and current in the system. By harmonically forcing input nodes and collecting the resulting steady-state signal at output nodes, we obtain a linear, analog device that transforms the inputs to outputs. We pose the lattice synthesis problem: given a linear transformation, find the inductances and capacitances for an inductor-capacitor circuit that can perform this transformation. Formulating this as an optimization problem, we numerically demonstrate its solvability using gradient-based methods. By solving the lattice synthesis problem for various desired transformations, we design several devices that can be used for signal processing and filtering. In addition to these spectral optimization problems, we study several problems on wave propagation, diffraction, and scattering. The focus is on the behavior of time-harmonic solutions to continuous and discrete wave equations

    Application of the PE method to up-slope sound propagation

    Get PDF

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    5 European & African Conference on Wind Engineering

    Get PDF
    The 5th European-African Conference of Wind Engineering is hosted in Florence, Tuscany, the city and the region where, in the early 15th century, pioneers moved the first steps, laying down the foundation stones of Mechanics and Applied Sciences (including fluid mechanics). These origins are well reflected by the astonishing visionary and revolutionary studies of Leonardo Da Vinci, whose kaleidoscopic genius intended the human being to become able to fly even 500 years ago… This is why the Organising Committee has decided to pay tribute to such a Genius by choosing Leonardo's "flying sphere" as the brand of 5th EACWE

    Stability and riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping

    No full text
    In this paper we study a star-shaped network of Euler-Bernoulli beams, in which a new geometric condition at the common node is imposed. For the network, we give a method to assert whether or not the system is asymptotically stable. In addition, by spectral analysis of the system operator, we prove that there exists a sequence of its root vectors that forms a Riesz basis with parentheses for the Hilbert state space. © American Institute of Mathematical Sciences.link_to_subscribed_fulltex
    corecore