44 research outputs found

    An Efficient Framework of Congestion Control for Next-Generation Networks

    Get PDF
    The success of the Internet can partly be attributed to the congestion control algorithm in the Transmission Control Protocol (TCP). However, with the tremendous increase in the diversity of networked systems and applications, TCP performance limitations are becoming increasingly problematic and the need for new transport protocol designs has become increasingly important.Prior research has focused on the design of either end-to-end protocols (e.g., CUBIC) that rely on implicit congestion signals such as loss and/or delay or network-based protocols (e.g., XCP) that use precise per-flow feedback from the network. While the former category of schemes haveperformance limitations, the latter are hard to deploy, can introduce high per-packet overhead, and open up new security challenges. This dissertation explores the middle ground between these designs and makes four contributions. First, we study the interplay between performance and feedback in congestion control protocols. We argue that congestion feedback in the form of aggregate load can provide the richness needed to meet the challenges of next-generation networks and applications. Second, we present the design, analysis, and evaluation of an efficient framework for congestion control called Binary Marking Congestion Control (BMCC). BMCC uses aggregate load feedback to achieve efficient and fair bandwidth allocations on high bandwidth-delaynetworks while minimizing packet loss rates and average queue length. BMCC reduces flow completiontimes by up to 4x over TCP and uses only the existing Explicit Congestion Notification bits.Next, we consider the incremental deployment of BMCC. We study the bandwidth sharing properties of BMCC and TCP over different partial deployment scenarios. We then present algorithms for ensuring safe co-existence of BMCC and TCP on the Internet. Finally, we consider the performance of BMCC over Wireless LANs. We show that the time-varying nature of the capacity of a WLAN can lead to significant performance issues for protocols that require capacity estimates for feedback computation. Using a simple model we characterize the capacity of a WLAN and propose the usage of the average service rate experienced by network layer packets as an estimate for capacity. Through extensive evaluation, we show that the resulting estimates provide good performance

    A Credit-based Home Access Point (CHAP) to Improve Application Quality on IEEE 802.11 Networks

    Get PDF
    Increasing availability of high-speed Internet and wireless access points has allowed home users to connect not only their computers but various other devices to the Internet. Every device running different applications requires unique Quality of Service (QoS). It has been shown that delay- sensitive applications, such as VoIP, remote login and online game sessions, suffer increased latency in the presence of throughput-sensitive applications such as FTP and P2P. Currently, there is no mechanism at the wireless AP to mitigate these effects except explicitly classifying the traffic based on port numbers or host IP addresses. We propose CHAP, a credit-based queue management technique, to eliminate the explicit configuration process and dynamically adjust the priority of all the flows from different devices to match their QoS requirements and wireless conditions to improve application quality in home networks. An analytical model is used to analyze the interaction between flows and credits and resulting queueing delays for packets. CHAP is evaluated using Network Simulator (NS2) under a wide range of conditions against First-In-First- Out (FIFO) and Strict Priority Queue (SPQ) scheduling algorithms. CHAP improves the quality of an online game, a VoIP session, a video streaming session, and a Web browsing activity by 20%, 3%, 93%, and 51%, respectively, compared to FIFO in the presence of an FTP download. CHAP provides these improvements similar to SPQ without an explicit classification of flows and a pre- configured scheduling policy. A Linux implementation of CHAP is used to evaluate its performance in a real residential network against FIFO. CHAP reduces the web response time by up to 85% compared to FIFO in the presence of a bulk file download. Our contributions include an analytic model for the credit-based queue management, simulation, and implementation of CHAP, which provides QoS with minimal configuration at the AP

    Network Traffic Control Design and Evaluation

    Get PDF
    Recently, the term bufferbloat has been coined to indicate the uncontrolled growth of the network queueing time. A number of network traffic control strategies have been proposed to control network queueing delay. Active Queue Management (AQM) algorithms such as RED, CoDel and PIE have been proposed to drop packets before the network queues become full and to notify upper layers, e.g., transport protocols, about possible congestion status. Innovative packet schedulers such as FQ-CoDel, have been introduced to prioritize flows which do not build queues. Strategies to reduce device buffering, e.g., BQL, have been proposed to increase the effectiveness of packet schedulers. Network experimentation through simulators such as ns-3, one of the most used network simulators, allows the study of bufferbloat and to evaluate solutions in a controlled environment. In this work, we aligned the ns-3 queueing system to the Linux one, one of the most used networking stacks. We introduced in ns-3 a traffic control module modelled after the Linux one. Our design allowed the introduction in ns-3 of schedulers such as FQ-CoDel and of algorithms to dynamically size the buffers such as BQL. Also, we devised a new emulation methodology to overcome some limitations and increase the emulation fidelity. Then, by using the new emulation methodology, we validated the traffic control module with its AQM algorithms (RED, CoDel, FQ-CoDel and PIE). Our experiments prove the high fidelity of network emulation and the high accuracy of the traffic control module and AQM algorithms. Then, we show two proposals of design and evaluation of traffic control strategies by using ns-3. Firstly, we designed and evaluated a traffic control layer for the backlog management in 3GPP stacks. The approach improves significantly the flows performance in LTE networks. Secondly, we highlighted possible design flaws in rate based AQM algorithms and proposed an alternative flow control approach. The approach allows the improvement of the effectiveness of AQM algorithms. Our work will allow researchers to design and evaluate in a more accurate manner traffic control strategies through ns-3 based simulation and emulation and to evaluate the accuracy of other modules implemented in ns-3

    Queues with Congestion-dependent Feedback

    Get PDF
    This dissertation expands the theory of feedback queueing systems and applies a number of these models to a performance analysis of the Transmission Control Protocol, a flow control protocol commonly used in the Internet

    Performance Improvements for FDDI and CSMA/CD Protocols

    Get PDF
    The High-Performance Computing Initiative from the White House Office of Science and Technology Policy has defined 20 major challenges in science and engineering which are dependent on the solutions to a number of high-performance computing problems. One of the major areas of focus of this initiative is the development of gigabit rate networks to be used in environments such as the space station or a National Research and Educational Network (NREN). The strategy here is to use existing network designs as building blocks for achieving higher rates, with the ultimate goal being a gigabit rate network. Two strategies which contribute to achieving this goal are examined in detail.1 FDDI2 is a token ring network based on fiber optics capable of a 100 Mbps rate. Both media access (MAC) and physical layer modifications are considered. A method is presented which allows one to determine maximum utilization based on the token-holding timer settings. Simulation results show that employing the second counter-rotating ring in combination with destination removal has a multiplicative effect greater than the effect which either of the factors have individually on performance. Two 100 Mbps rings can handle loads in the range of 400 to 500 Mbps for traffic with a uniform distribution and fixed packet size. Performance is dependent on the number of nodes, improving as the number increases. A wide range of environments are examined to illustrate robustness, and a method of implementation is discussed
    corecore