362 research outputs found

    Modeling and Analysis of Harmonic Stability in an AC Power-Electronics-Based Power System

    Get PDF

    Passivation of Grid-Following VSCs: A Comparison Between Active Damping and Multi-Sampled PWM

    Get PDF
    This article compares different strategies used to enhance the stability properties of grid-following voltage-source converters (VSCs). Because of digital delays, VSC admittance exhibits a nonpassive zone, which introduces negative damping and may destabilize the grid-connected operation. It is shown that typically used active damping (AD) strategies only bring positive impact up to a certain frequency, while deteriorating admittance properties around and above the Nyquist frequency. Multi-sampled pulsewidth modulation (MS-PWM) greatly extends the passive admittance region, using only a single-loop current controller. Experimental admittance measurements are performed on a single-phase VSC, up to twice the switching frequency. Subsequently, different grid-connected scenarios are tested to show that MS-PWM retains stable operation, where AD methods cause instability. This article also offers analytic modeling and experimental measurements of noise propagation for compared strategies. It is shown that derivative-based AD is not highly sensitive; however, MS-PWM offers additional noise suppression

    Modeling and analysis of harmonic resonance in a power electronics based AC power system

    Get PDF

    General Unified Integral Controller with Zero Steady-State Error for Single-Phase Grid-Connected Inverters

    Get PDF

    A Modified Droop Control Method for Parallel-Connected Current Source Inverters

    Get PDF

    Robust active damping in LCL-filter based medium-voltage parallel grid-inverters for wind turbines

    Get PDF
    LCL-filter based grid-tie inverters require damping for current-loop stability. There are only software modifications in active damping, whereas resistors are added in passive damping. Although passive damping incurs in additional losses, it is widely used because of its simplicity. This article considers the active damping in medium-voltage parallel inverters for wind turbines. Due to cost reasons, only minimal software changes are allowed and no extra sensors can be used. The procedure must be robust against line-inductance variations in weak grids. Double-update mode is needed so the resonance frequency is under the Nyquist limit. The bandwidth reduction when using active damping is also required to be known beforehand. Moreover, the design procedure should be simple without requiring numerous trial-and-error iterations. In spite of the abundant literature, the options are limited under these circumstances. Filter-based solutions are appropriate and a new procedure for tuning the notch-filter is proposed. However, this procedure requires that the resistance of the inductors is known and a novel filter-based solution is proposed that uses lag-filters. The lag-filters displace the phase angle at the resonance frequency so that the Nyquist stability criterion is fulfilled. Simulations and experiments with a 100 kVA prototype validate the analysis

    Eingangsadmittanz-Modellierung und passivitätsbasierte Stabilisierung von digital-stromgeregelten, netzgebundenen Umrichtern

    Get PDF
    Due to the ever increasing number of renewable energy systems in the electrical power grid, the application of power electronic-based circuits is gaining more and more importance. It has however been known for a while that interactions of one or multiple converters with resonances in the grid can lead to poorly damped oscillations, and thus, may threaten the stability of parts of the power system. The passivity theory has proven to be particularly powerful in preventing such situations. Accordingly, the stability of the power grid can be guaranteed by design if all components act passive. This means that all active loads and energy feeding converters have an input admittance with a non-negative real part. This can theoretically be achieved using passive or active damping strategies, but most research neglects real-world effects, which arise from the sampling of high-frequency switching harmonics. The aim of this dissertation is therefore to review the complete modeling and analysis of digitally current-controlled grid-connected converters and to extend the controller as well as filter design. On the basis of typical single-input single-output models of the converter’s input admittance, methods for the design of a passive damping or an active feed-forward are proposed and it is discussed which aspects have to be considered when implementing the filters. However, since the used models cannot reproduce all alias effects, in the further part of the thesis a multiple-input multiple-output converter model is developed. It is shown that the mirroring of high-frequency signal components onto low-frequency components can in principle be described by a dynamic uncertainty that affects the behavior of the converters' baseband dynamics. Due to this new insight it becomes clear which criteria passive or active filters should fulfill in order to specifically counteract the often negative mirroring effects of digital control. Finally, it is demonstrated that a robust passivation of the converter input admittance can prevent a destabilization of the power system by harmonics for a large number of grid impedances. The presented theory and the developed controller design are illustrated and verified by various simulations of an exemplary converter system.Aufgrund der immer größer werdenden Anzahl von erneuerbaren Energieanlagen im elektrischen Energieversorgungsnetz gewinnt der Einsatz von leistungselektronischen Schaltungen immer mehr an Bedeutung. Es ist jedoch seit längerem bekannt, dass Wechselwirkungen von einem oder mehreren Umrichtern mit Resonanzen im Netz zu schlecht gedämpften Schwingungen führen und damit die Stabilität von Teilen des Energienetzes gefährden können. Die Passivitätstheorie hat sich als besonders wirkungsvoll erwiesen, um solche Situationen zu verhindern. Demnach kann die Stabilität des Stromnetzes bereits in der Designphase gewährleistet werden, indem alle Komponenten passiv wirken. Das bedeutet, dass alle aktiven Verbraucher und einspeisenden Umrichter eine Eingangsadmittanz mit nicht negativem Realteil besitzen. Dies ist theoretisch mit Hilfe von passiven oder aktiven Dämpfungsstrategien zu erreichen. Die meisten Forschungsarbeiten vernachlässigen jedoch reale Effekte, die bei der Abtastung von hochfrequenten Harmonischen entstehen. Ziel dieser Dissertation ist es daher, den kompletten Modellierungs-, Analyse- und Regler- sowie Filterentwurfsprozess von digital-stromgeregelten, netzgebundenen Umrichtern zu überprüfen und zu erweitern. Auf der Basis typischer Eingrößenmodelle der Umrichter-Eingangsadmittanz werden Verfahren für die Auslegung einer passiven Dämpfung bzw. einer aktiven Vorsteuerung vorgeschlagen und es wird diskutiert, welche Aspekte bei der Implementierung der Filter zu berücksichtigen sind. Da sich mit den Modellen jedoch nicht alle Alias-Effekte abbilden lassen, wird im weiteren Teil der Arbeit ein Mehrgrößen-Umrichtermodell entwickelt. Es zeigt sich, dass die Spiegelung hochfrequenter Signalanteile auf niederfrequente Anteile prinzipiell durch eine dynamische Unsicherheit beschrieben werden kann, die das Grundfrequenzverhalten der Umrichter beeinflusst. Dank dieser neuen Erkenntnisse wird deutlich, welche Kriterien passive oder aktive Filter erfüllen sollten, um den oft negativen Spiegeleffekten der digitalen Regelung gezielt entgegenzuwirken. Es wird demonstriert, dass eine robuste Passivierung der Umrichter-Eingangsadmittanz eine Destabilisierung des Energienetzes durch Harmonische für eine Vielzahl von Netzimpedanzen verhindern kann. Die vorgestellte Theorie und der erarbeitete Reglerentwurf werden anhand diverser Simulationen eines beispielhaften Umrichtersystems verdeutlicht und validiert
    • …
    corecore