4,881 research outputs found

    An improved stability criterion for discrete-time time-delayed Lur’e systemwith sector-bounded nonlinearities

    Get PDF
    The absolute stability problem of discrete-time time-delayed Lur\u27e systems with sector bounded nonlinearities is investigated in this paper. Firstly, a modified Lyapunov-Krasovskii functional (LKF) is designed with augmenting additional double summation terms, which complements more coupling information between the delay intervals and other system state variables than some previous LKFs. Secondly, some improved delay-dependent absolute stability criteria based on linear matrix inequality form (LMI) are proposed via the modified LKF and the relaxed free-matrix-based summation inequality technique application. The stability criteria are less conservative than some results previously proposed. The reduction of the conservatism mainly relies on the full use of the relaxed summation inequality technique based on the modified LKF. Finally, two common numerical examples are presented to show the effectiveness of the proposed approach

    An improved stability criterion for linear time-varying delay systems

    Get PDF
    This paper considers the stability problem of linear systems with time-varying delays. A modified Lyapunov–Krasovskii functional (LKF) is constructed, which consists of delay-dependent matrices and double integral items under two time-varying subintervals. Based on the modified LKF, a less conservative stability criterion than some previous ones is derived. Furthermore, to obtain a tighter bound of the integral terms, the quadratic generalized free-weighting matrix inequality (QGFMI) is fully applied to different delay subintervals, which further reduces the conservatism of the stability criterion. Finally, three numerical examples are presented to show the effectiveness of the proposed approach

    Cooperative Adaptive Control for Cloud-Based Robotics

    Full text link
    This paper studies collaboration through the cloud in the context of cooperative adaptive control for robot manipulators. We first consider the case of multiple robots manipulating a common object through synchronous centralized update laws to identify unknown inertial parameters. Through this development, we introduce a notion of Collective Sufficient Richness, wherein parameter convergence can be enabled through teamwork in the group. The introduction of this property and the analysis of stable adaptive controllers that benefit from it constitute the main new contributions of this work. Building on this original example, we then consider decentralized update laws, time-varying network topologies, and the influence of communication delays on this process. Perhaps surprisingly, these nonidealized networked conditions inherit the same benefits of convergence being determined through collective effects for the group. Simple simulations of a planar manipulator identifying an unknown load are provided to illustrate the central idea and benefits of Collective Sufficient Richness.Comment: ICRA 201

    Finite-time Stability, Dissipativity and Passivity Analysis of Discrete-time Neural Networks Time-varying Delays

    Get PDF
    The neural network time-varying delay was described as the dynamic properties of a neural cell, including neural functional and neural delay differential equations. The differential expression explains the derivative term of current and past state. The objective of this paper obtained the neural network time-varying delay. A delay-dependent condition is provided to ensure the considered discrete-time neural networks with time-varying delays to be finite-time stability, dissipativity, and passivity. This paper using a new Lyapunov-Krasovskii functional as well as the free-weighting matrix approach and a linear matrix inequality analysis (LMI) technique constructing to a novel sufficient criterion on finite-time stability, dissipativity, and passivity of the discrete-time neural networks with time-varying delays for improving. We propose sufficient conditions for discrete-time neural networks with time-varying delays. An effective LMI approach derives by base the appropriate type of Lyapunov functional. Finally, we present the effectiveness of novel criteria of finite-time stability, dissipativity, and passivity condition of discrete-time neural networks with time-varying delays in the form of linear matrix inequality (LMI)

    Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: A survey

    Get PDF
    Copyright © 2013 Jun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements, fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61329301, 61333012, 61374127 and 11301118, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant no. GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
    corecore