961 research outputs found

    Model predictive control techniques for hybrid systems

    Get PDF
    This paper describes the main issues encountered when applying model predictive control to hybrid processes. Hybrid model predictive control (HMPC) is a research field non-fully developed with many open challenges. The paper describes some of the techniques proposed by the research community to overcome the main problems encountered. Issues related to the stability and the solution of the optimization problem are also discussed. The paper ends by describing the results of a benchmark exercise in which several HMPC schemes were applied to a solar air conditioning plant.Ministerio de Eduación y Ciencia DPI2007-66718-C04-01Ministerio de Eduación y Ciencia DPI2008-0581

    Composite control Lyapunov functions for robust stabilization of constrained uncertain dynamical systems

    Get PDF
    This work presents innovative scientific results on the robust stabilization of constrained uncertain dynamical systems via Lyapunov-based state feedback control. Given two control Lyapunov functions, a novel class of smooth composite control Lyapunov functions is presented. This class, which is based on the R-functions theory, is universal for the stabilizability of linear differential inclusions and has the following property. Once a desired controlled invariant set is fixed, the shape of the inner level sets can be made arbitrary close to any given ones, in a smooth and non-homothetic way. This procedure is an example of ``merging'' two control Lyapunov functions. In general, a merging function consists in a control Lyapunov function whose gradient is a continuous combination of the gradients of the two parents control Lyapunov functions. The problem of merging two control Lyapunov functions, for instance a global control Lyapunov function with a large controlled domain of attraction and a local one with a guaranteed local performance, is considered important for several control applications. The main reason is that when simultaneously concerning constraints, robustness and optimality, a single Lyapunov function is usually suitable for just one of these goals, but ineffective for the others. For nonlinear control-affine systems, both equations and inclusions, some equivalence properties are shown between the control-sharing property, namely the existence of a single control law which makes simultaneously negative the Lyapunov derivatives of the two given control Lyapunov functions, and the existence of merging control Lyapunov functions. Even for linear systems, the control-sharing property does not always hold, with the remarkable exception of planar systems. For the class of linear differential inclusions, linear programs and linear matrix inequalities conditions are given for the the control-sharing property to hold. The proposed Lyapunov-based control laws are illustrated and simulated on benchmark case studies, with positive numerical results

    Piecewise Linear Control Systems

    Get PDF
    This thesis treats analysis and design of piecewise linear control systems. Piecewise linear systems capture many of the most common nonlinearities in engineering systems, and they can also be used for approximation of other nonlinear systems. Several aspects of linear systems with quadratic constraints are generalized to piecewise linear systems with piecewise quadratic constraints. It is shown how uncertainty models for linear systems can be extended to piecewise linear systems, and how these extensions give insight into the classical trade-offs between fidelity and complexity of a model. Stability of piecewise linear systems is investigated using piecewise quadratic Lyapunov functions. Piecewise quadratic Lyapunov functions are much more powerful than the commonly used quadratic Lyapunov functions. It is shown how piecewise quadratic Lyapunov functions can be computed via convex optimization in terms of linear matrix inequalities. The computations are based on a compact parameterization of continuous piecewise quadratic functions and conditional analysis using the S-procedure. A unifying framework for computation of a variety of Lyapunov functions via convex optimization is established based on this parameterization. Systems with attractive sliding modes and systems with bounded regions of attraction are also treated. Dissipativity analysis and optimal control problems with piecewise quadratic cost functions are solved via convex optimization. The basic results are extended to fuzzy systems, hybrid systems and smooth nonlinear systems. It is shown how Lyapunov functions with a discontinuous dependence on the discrete state can be computed via convex optimization. An automated procedure for increasing the flexibility of the Lyapunov function candidate is suggested based on linear programming duality. A Matlab toolbox that implements several of the results derived in the thesis is presented

    Stability of hybrid model predictive control

    Get PDF
    In this paper we investigate the stability of hybrid systems in closed-loop with Model Predictive Controllers (MPC) and we derive a priori sufficient conditions for Lyapunov asymptotic stability and exponential stability. A general theory is presented which proves that Lyapunov stability is achieved for both terminal cost and constraint set and terminal equality constraint hybrid MPC, even though the considered Lyapunov function and the system dynamics may be discontinuous. For particular choices of MPC criteria and constrained Piecewise Affine (PWA) systems as the prediction models we develop novel algorithms for computing the terminal cost and the terminal constraint set. For a quadratic MPC cost, the stabilization conditions translate into a linear matrix inequality while, for an 1-norm based MPC cost, they are obtained as 1-norm inequalities. It is shown that by using 1-norms, the terminal constraint set is automatically obtained as a polyhedron or a finite union of polyhedra by taking a sublevel set of the calculated terminal cost function. New algorithms are developed for calculating polyhedral or piecewise polyhedral positively invariant sets for PWA systems. In this manner, the on-line optimization problem leads to a mixed integer quadratic programming problem or to a mixed integer linear programming problem, which can be solved by standard optimization tools. Several examples illustrate the effectiveness of the developed methodology

    Non-smooth model predictive control: stability and applications to hybrid systems

    Get PDF
    In this report we investigate the stability of hybrid systems in closed-loop with Model Predictive Controllers (MPC) and we derive a priori sufficient conditions for Lyapunov asymptotic stability and exponential stability. A general theory is presented which proves that Lyapunov stability is achieved for both terminal cost and constraint set and terminal equality constraint hybrid MPC, even though the considered Lyapunov function and the system dynamics may be discontinuous. For particular choices of MPC criteria and constrained Piecewise Affine (PWA) systems as the prediction models we develop novel algorithms for computing the terminal cost and the terminal constraint set. For a quadratic MPC cost, the stabilization conditions translate into a linear matrix inequality while, for an ∞-norm based MPC cost, they are obtained as ∞-norm inequalities. It is shown that by using ∞-norms, the terminal constraint set is automatically obtained as a polyhedron or a finite union of polyhedra by taking a sublevel set of the calculated terminal cost function. New algorithms are developed for calculating polyhedral or piecewise polyhedral positively invariant sets for PWA systems. In this manner, the on-line optimization problem leads to a mixed integer quadratic programming problem or to a mixed integer linear programming problem, which can be solved by standard optimization tools. Several examples illustrate the effectiveness of the developed methodology

    Robust Stability Analysis of Nonlinear Hybrid Systems

    Get PDF
    We present a methodology for robust stability analysis of nonlinear hybrid systems, through the algorithmic construction of polynomial and piecewise polynomial Lyapunov-like functions using convex optimization and in particular the sum of squares decomposition of multivariate polynomials. Several improvements compared to previous approaches are discussed, such as treating in a unified way polynomial switching surfaces and robust stability analysis for nonlinear hybrid systems
    corecore