2,675 research outputs found

    A Petrov-Galerkin Finite Element Method for Fractional Convection-Diffusion Equations

    Get PDF
    In this work, we develop variational formulations of Petrov-Galerkin type for one-dimensional fractional boundary value problems involving either a Riemann-Liouville or Caputo derivative of order α∈(3/2,2)\alpha\in(3/2, 2) in the leading term and both convection and potential terms. They arise in the mathematical modeling of asymmetric super-diffusion processes in heterogeneous media. The well-posedness of the formulations and sharp regularity pickup of the variational solutions are established. A novel finite element method is developed, which employs continuous piecewise linear finite elements and "shifted" fractional powers for the trial and test space, respectively. The new approach has a number of distinct features: It allows deriving optimal error estimates in both L2(D)L^2(D) and H1(D)H^1(D) norms; and on a uniform mesh, the stiffness matrix of the leading term is diagonal and the resulting linear system is well conditioned. Further, in the Riemann-Liouville case, an enriched FEM is proposed to improve the convergence. Extensive numerical results are presented to verify the theoretical analysis and robustness of the numerical scheme.Comment: 23 p

    Universality in Systems with Power-Law Memory and Fractional Dynamics

    Full text link
    There are a few different ways to extend regular nonlinear dynamical systems by introducing power-law memory or considering fractional differential/difference equations instead of integer ones. This extension allows the introduction of families of nonlinear dynamical systems converging to regular systems in the case of an integer power-law memory or an integer order of derivatives/differences. The examples considered in this review include the logistic family of maps (converging in the case of the first order difference to the regular logistic map), the universal family of maps, and the standard family of maps (the latter two converging, in the case of the second difference, to the regular universal and standard maps). Correspondingly, the phenomenon of transition to chaos through a period doubling cascade of bifurcations in regular nonlinear systems, known as "universality", can be extended to fractional maps, which are maps with power-/asymptotically power-law memory. The new features of universality, including cascades of bifurcations on single trajectories, which appear in fractional (with memory) nonlinear dynamical systems are the main subject of this review.Comment: 23 pages 7 Figures, to appear Oct 28 201

    On the Leibniz rule and Laplace transform for fractional derivatives

    Full text link
    Taylor series is a useful mathematical tool when describing and constructing a function. With the series representation, some properties of fractional calculus can be revealed clearly. This paper investigates two typical applications: Lebiniz rule and Laplace transform. It is analytically shown that the commonly used Leibniz rule cannot be applied for Caputo derivative. Similarly, the well-known Laplace transform of Riemann-Liouville derivative is doubtful for n-th continuously differentiable function. By the aid of this series representation, the exact formula of Caputo Leibniz rule and the explanation of Riemann-Liouville Laplace transform are presented. Finally, three illustrative examples are revisited to confirm the obtained results
    • …
    corecore