46,568 research outputs found

    Bright and dark breathers in Fermi-Pasta-Ulam lattices

    Get PDF
    In this paper we study the existence and linear stability of bright and dark breathers in one-dimensional FPU lattices. On the one hand, we test the range of validity of a recent breathers existence proof [G. James, {\em C. R. Acad. Sci. Paris}, 332, Ser. 1, pp. 581 (2001)] using numerical computations. Approximate analytical expressions for small amplitude bright and dark breathers are found to fit very well exact numerical solutions even far from the top of the phonon band. On the other hand, we study numerically large amplitude breathers non predicted in the above cited reference. In particular, for a class of asymmetric FPU potentials we find an energy threshold for the existence of exact discrete breathers, which is a relatively unexplored phenomenon in one-dimensional lattices. Bright and dark breathers superposed on a uniformly stressed static configuration are also investigated.Comment: 11 pages, 16 figure

    A Periodic Systems Toolbox for MATLAB

    Get PDF
    The recently developed Periodic Systems Toolbox for MATLAB is described. The basic approach to develop this toolbox was to exploit the powerful object manipulation features of MATLAB via flexible andfunctionally rich high level m-functions, while simultaneously enforcing highly efficient and numerically sound computations via the mex-function technology of MATLAB to solve critical numerical problems.The m-functions based user interfaces ensure user-friendliness in operating with the functions of this toolbox via an object oriented approach to handle periodic system descriptions. The mex-functions are based on Fortran implementations of recently developed structure exploiting and structure preserving numerical algorithms for periodic systems which completely avoid forming of lifted representations

    Standing wave instabilities in a chain of nonlinear coupled oscillators

    Full text link
    We consider existence and stability properties of nonlinear spatially periodic or quasiperiodic standing waves (SWs) in one-dimensional lattices of coupled anharmonic oscillators. Specifically, we consider Klein-Gordon (KG) chains with either soft (e.g., Morse) or hard (e.g., quartic) on-site potentials, as well as discrete nonlinear Schroedinger (DNLS) chains approximating the small-amplitude dynamics of KG chains with weak inter-site coupling. The SWs are constructed as exact time-periodic multibreather solutions from the anticontinuous limit of uncoupled oscillators. In the validity regime of the DNLS approximation these solutions can be continued into the linear phonon band, where they merge into standard harmonic SWs. For SWs with incommensurate wave vectors, this continuation is associated with an inverse transition by breaking of analyticity. When the DNLS approximation is not valid, the continuation may be interrupted by bifurcations associated with resonances with higher harmonics of the SW. Concerning the stability, we identify one class of SWs which are always linearly stable close to the anticontinuous limit. However, approaching the linear limit all SWs with nontrivial wave vectors become unstable through oscillatory instabilities, persisting for arbitrarily small amplitudes in infinite lattices. Investigating the dynamics resulting from these instabilities, we find two qualitatively different regimes for wave vectors smaller than or larger than pi/2, respectively. In one regime persisting breathers are found, while in the other regime the system rapidly thermalizes.Comment: 57 pages, 21 figures, to be published in Physica D. Revised version: Figs. 5 and 12 (f) replaced, some new results added to Sec. 5, Sec.7 (Conclusions) extended, 3 references adde
    corecore