1,001 research outputs found

    Decisions and disease: a mechanism for the evolution of cooperation

    Get PDF
    In numerous contexts, individuals may decide whether they take actions to mitigate the spread of disease, or not. Mitigating the spread of disease requires an individual to change their routine behaviours to benefit others, resulting in a 'disease dilemma' similar to the seminal prisoner's dilemma. In the classical prisoner's dilemma, evolutionary game dynamics predict that all individuals evolve to 'defect.' We have discovered that when the rate of cooperation within a population is directly linked to the rate of spread of the disease, cooperation evolves under certain conditions. For diseases which do not confer immunity to recovered individuals, if the time scale at which individuals receive information is sufficiently rapid compared to the time scale at which the disease spreads, then cooperation emerges. Moreover, in the limit as mitigation measures become increasingly effective, the disease can be controlled, and the rate of infections tends to zero. Our model is based on theoretical mathematics and therefore unconstrained to any single context. For example, the disease spreading model considered here could also be used to describe social and group dynamics. In this sense, we may have discovered a fundamental and novel mechanism for the evolution of cooperation in a broad sense

    Equation-Free Multiscale Computational Analysis of Individual-Based Epidemic Dynamics on Networks

    Full text link
    The surveillance, analysis and ultimately the efficient long-term prediction and control of epidemic dynamics appear to be one of the major challenges nowadays. Detailed atomistic mathematical models play an important role towards this aim. In this work it is shown how one can exploit the Equation Free approach and optimization methods such as Simulated Annealing to bridge detailed individual-based epidemic simulation with coarse-grained, systems-level, analysis. The methodology provides a systematic approach for analyzing the parametric behavior of complex/ multi-scale epidemic simulators much more efficiently than simply simulating forward in time. It is shown how steady state and (if required) time-dependent computations, stability computations, as well as continuation and numerical bifurcation analysis can be performed in a straightforward manner. The approach is illustrated through a simple individual-based epidemic model deploying on a random regular connected graph. Using the individual-based microscopic simulator as a black box coarse-grained timestepper and with the aid of Simulated Annealing I compute the coarse-grained equilibrium bifurcation diagram and analyze the stability of the stationary states sidestepping the necessity of obtaining explicit closures at the macroscopic level under a pairwise representation perspective

    Evolutionary-Game-Theory-Based Epidemiological Model for Prediction of Infections with Application to Demand Forecasting in Pharmaceutical Inventory Management Problems

    Get PDF
    Pharmaceuticals play a critical role in the eradication of infectious diseases. Effective pharmaceutical inventory management is important for controlling epidemics since medical resources such as pharmaceuticals, medical staff, and hospitals are limited. In this study, a novel epidemiological model is proposed to evaluate the resource requirements for pharmaceuticals and is applied to analyze different pharmaceutical inventory management strategies. We formulate the relationship between the number of infected individuals and the risk of infection to account for virus mutation. Evolutionary game theory is integrated into an epidemiological model to represent human behavioral choices. The proposed model can be developed to forecast the demand for pharmaceuticals and analyze how human behavior affects the demand of pharmaceuticals. This study found that making people aware of the risk of disease has a positive impact on both reducing the number of infections and managing the pharmaceutical inventory. The main contribution of this study is to enhance areas of research in pharmaceutical inventory management. This study revealed that the correct recognition of the risk of disease leads to appropriate pharmaceutical management. There are a few studies on the application of infectious disease models to inventory control problems. This study provides clues toward proper pharmaceutical management
    • …
    corecore