10,738 research outputs found

    A three-dimensional macroscopic fundamental diagram for mixed bi-modal urban networks

    Get PDF
    Recent research has studied the existence and the properties of a macroscopic fundamental diagram (MFD) for large urban networks. The MFD should not be universally expected as high scatter or hysteresis might appear for some type of networks, like heterogeneous networks or freeways. In this paper, we investigate if aggregated relationships can describe the performance of urban bi-modal networks with buses and cars sharing the same road infrastructure and identify how this performance is influenced by the interactions between modes and the effect of bus stops. Based on simulation data, we develop a three-dimensional vehicle MFD (3D-vMFD) relating the accumulation of cars and buses, and the total circulating vehicle flow in the network. This relation experiences low scatter and can be approximated by an exponential-family function. We also propose a parsimonious model to estimate a three-dimensional passenger MFD (3D-pMFD), which provides a different perspective of the flow characteristics in bi-modal networks, by considering that buses carry more passengers. We also show that a constant Bus-Car Unit (BCU) equivalent value cannot describe the influence of buses in the system as congestion develops. We then integrate a partitioning algorithm to cluster the network into a small number of regions with similar mode composition and level of congestion. Our results show that partitioning unveils important traffic properties of flow heterogeneity in the studied network. Interactions between buses and cars are different in the partitioned regions due to higher density of buses. Building on these results, various traffic management strategies in bi-modal multi-region urban networks can then be integrated, such as redistribution of urban space among different modes, perimeter signal control with preferential treatment of buses and bus priority

    Two-layer adaptive signal control framework for large-scale dynamically-congested networks: Combining efficient Max Pressure with Perimeter Control

    Full text link
    Traffic-responsive signal control is a cost-effective and easy-to-implement network management strategy with high potential in improving performance in congested networks with dynamic characteristics. Max Pressure (MP) distributed controller gained significant popularity due to its theoretically proven ability of queue stabilization and throughput maximization under specific assumptions. However, its effectiveness under saturated conditions is questionable, while network-wide application is limited due to high instrumentation cost. Perimeter control (PC) based on the concept of the Macroscopic Fundamental Diagram (MFD) is a state-of-the-art aggregated strategy that regulates exchange flows between regions, in order to maintain maximum regional travel production and prevent over-saturation. Yet, homogeneity assumption is hardly realistic in congested states, thus compromising PC efficiency. In this paper, the effectiveness of network-wide, parallel application of PC and MP embedded in a two-layer control framework is assessed with mesoscopic simulation. Aiming at reducing implementation cost of MP without significant performance loss, we propose a method to identify critical nodes for partial MP deployment. A modified version of Store-and-forward paradigm incorporating finite queue and spill-back consideration is used to test different configurations of the proposed framework, for a real large-scale network, in moderately and highly congested scenarios. Results show that: (i) combined control of MP and PC outperforms separate MP and PC applications in both demand scenarios; (ii) MP control in reduced critical node sets leads to similar or even better performance compared to full-network implementation, thus allowing for significant cost reduction; iii) the proposed control schemes improve system performance even under demand fluctuations of up to 20% of mean.Comment: Submitted to Transportation Research Part C: Emerging Technologie

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Perimeter Control with Heterogeneous Cordon Signal Behaviors: A Semi-Model Dependent Reinforcement Learning Approach

    Full text link
    Perimeter Control (PC) strategies have been proposed to address urban road network control in oversaturated situations by monitoring transfer flows of the Protected Network (PN). The uniform metering rate for cordon signals in existing studies ignores the variety of local traffic states at the intersection level, which may cause severe local traffic congestion and ruin the network stability. This paper introduces a semi-model dependent Multi-Agent Reinforcement Learning (MARL) framework to conduct PC with heterogeneous cordon signal behaviors. The proposed strategy integrates the MARL-based signal control method with centralized feedback PC policy and is applied to cordon signals of the PN. It operates as a two-stage system, with the feedback PC strategy detecting the overall traffic state within the PN and then distributing local instructions to cordon signals controlled by agents in the MARL framework. Each cordon signal acts independently and differently, creating a slack and distributed PC for the PN. The combination of the model-free and model-based methods is achieved by reconstructing the action-value function of the local agents with PC feedback reward without violating the integrity of the local signal control policy learned from the RL training process. Through numerical tests with different demand patterns in a microscopic traffic environment, the proposed PC strategy (a) is shown robustness, scalability, and transferability, (b) outperforms state-of-the-art model-based PC strategies in increasing network throughput, reducing cordon queue and carbon emission

    Resilient Distributed Optimization Algorithms for Resource Allocation

    Get PDF
    Distributed algorithms provide flexibility over centralized algorithms for resource allocation problems, e.g., cyber-physical systems. However, the distributed nature of these algorithms often makes the systems susceptible to man-in-the-middle attacks, especially when messages are transmitted between price-taking agents and a central coordinator. We propose a resilient strategy for distributed algorithms under the framework of primal-dual distributed optimization. We formulate a robust optimization model that accounts for Byzantine attacks on the communication channels between agents and coordinator. We propose a resilient primal-dual algorithm using state-of-the-art robust statistics methods. The proposed algorithm is shown to converge to a neighborhood of the robust optimization model, where the neighborhood's radius is proportional to the fraction of attacked channels.Comment: 15 pages, 1 figure, accepted to CDC 201

    Information protection in content-centric networks

    Get PDF
    Information-centric networks have distinct advantages with regard to securing sensitive content as a result of their new approaches to managing data in potential future internet architectures. These kinds of systems, because of their data-centric perspective, provide the opportunity to embed policy-centric content management components that can address looming problems in information distribution that both companies and federal agencies are beginning to face with respect to sensitive content. This information-centricity facilitates the application of security techniques that are very difficult and in some cases impossible to apply in traditional packetized networks. This work addresses the current state of the art in both these kinds of cross-domain systems and information-centric networking in general. It then covers other related work, outlining why information-centric networks are more powerful than traditional packetized networks with regard to usage management. Then, it introduces a taxonomy of types of policy-centric usage managed information network systems and an associated methodology for evaluating the individual taxonomic elements. It finally delves into experimental evaluation of the various defined architectural options and presents results of comparing experimental evaluation with anticipated outcomes
    • …
    corecore