457 research outputs found

    Modeling and analysis of a phase field system for damage and phase separation processes in solids

    Get PDF
    In this work, we analytically investigate a multi-component system for describing phase separation and damage processes in solids. The model consists of a parabolic diffusion equation of fourth order for the concentration coupled with an elliptic system with material dependent coefficients for the strain tensor and a doubly nonlinear differential inclusion for the damage function. The main aim of this paper is to show existence of weak solutions for the introduced model, where, in contrast to existing damage models in the literature, different elastic properties of damaged and undamaged material are regarded. To prove existence of weak solutions for the introduced model, we start with an approximation system. Then, by passing to the limit, existence results of weak solutions for the proposed model are obtained via suitable variational techniques.Comment: Keywords: Cahn-Hilliard system, phase separation, elliptic-parabolic systems, doubly nonlinear differential inclusions, complete damage, existence results, energetic solutions, weak solutions, linear elasticity, rate-dependent system

    Weighted Energy-Dissipation principle for gradient flows in metric spaces

    Full text link
    This paper develops the so-called Weighted Energy-Dissipation (WED) variational approach for the analysis of gradient flows in metric spaces. This focuses on the minimization of the parameter-dependent global-in-time functional of trajectories \mathcal{I}_\varepsilon[u] = \int_0^{\infty} e^{-t/\varepsilon}\left( \frac12 |u'|^2(t) + \frac1{\varepsilon}\phi(u(t)) \right) \dd t, featuring the weighted sum of energetic and dissipative terms. As the parameter ε\varepsilon is sent to~00, the minimizers uεu_\varepsilon of such functionals converge, up to subsequences, to curves of maximal slope driven by the functional ϕ\phi. This delivers a new and general variational approximation procedure, hence a new existence proof, for metric gradient flows. In addition, it provides a novel perspective towards relaxation

    Optimal control of the sweeping process over polyhedral controlled sets

    Get PDF
    The paper addresses a new class of optimal control problems governed by the dissipative and discontinuous differential inclusion of the sweeping/Moreau process while using controls to determine the best shape of moving convex polyhedra in order to optimize the given Bolza-type functional, which depends on control and state variables as well as their velocities. Besides the highly non-Lipschitzian nature of the unbounded differential inclusion of the controlled sweeping process, the optimal control problems under consideration contain intrinsic state constraints of the inequality and equality types. All of this creates serious challenges for deriving necessary optimality conditions. We develop here the method of discrete approximations and combine it with advanced tools of first-order and second-order variational analysis and generalized differentiation. This approach allows us to establish constructive necessary optimality conditions for local minimizers of the controlled sweeping process expressed entirely in terms of the problem data under fairly unrestrictive assumptions. As a by-product of the developed approach, we prove the strong W1,2W^{1,2}-convergence of optimal solutions of discrete approximations to a given local minimizer of the continuous-time system and derive necessary optimality conditions for the discrete counterparts. The established necessary optimality conditions for the sweeping process are illustrated by several examples

    Variational convergence of gradient flows and rate-independent evolutions in metric spaces

    Get PDF
    We study the asymptotic behaviour of families of gradient flows in a general metric setting, when the metric-dissipation potentials degenerate in the limit to a dissipation with linear growth. We present a general variational definition of BV solutions to metric evolutions, showing the different characterization of the solution in the absolutely continuous regime, on the singular Cantor part, and along the jump transitions. By using tools of metric analysis, BV functions and blow-up by time rescaling, we show that this variational notion is stable with respect to a wide class of perturbations involving energies, distances, and dissipation potentials. As a particular application, we show that BV solutions to rate-independent problems arise naturally as a limit of pp-gradient flows, p>1p>1, when the exponents pp converge to 1
    • …
    corecore