169,988 research outputs found

    Flow graphs: interweaving dynamics and structure

    Get PDF
    The behavior of complex systems is determined not only by the topological organization of their interconnections but also by the dynamical processes taking place among their constituents. A faithful modeling of the dynamics is essential because different dynamical processes may be affected very differently by network topology. A full characterization of such systems thus requires a formalization that encompasses both aspects simultaneously, rather than relying only on the topological adjacency matrix. To achieve this, we introduce the concept of flow graphs, namely weighted networks where dynamical flows are embedded into the link weights. Flow graphs provide an integrated representation of the structure and dynamics of the system, which can then be analyzed with standard tools from network theory. Conversely, a structural network feature of our choice can also be used as the basis for the construction of a flow graph that will then encompass a dynamics biased by such a feature. We illustrate the ideas by focusing on the mathematical properties of generic linear processes on complex networks that can be represented as biased random walks and also explore their dual consensus dynamics.Comment: 4 pages, 1 figur

    Functional Integration of Ecological Networks through Pathway Proliferation

    Full text link
    Large-scale structural patterns commonly occur in network models of complex systems including a skewed node degree distribution and small-world topology. These patterns suggest common organizational constraints and similar functional consequences. Here, we investigate a structural pattern termed pathway proliferation. Previous research enumerating pathways that link species determined that as pathway length increases, the number of pathways tends to increase without bound. We hypothesize that this pathway proliferation influences the flow of energy, matter, and information in ecosystems. In this paper, we clarify the pathway proliferation concept, introduce a measure of the node--node proliferation rate, describe factors influencing the rate, and characterize it in 17 large empirical food-webs. During this investigation, we uncovered a modular organization within these systems. Over half of the food-webs were composed of one or more subgroups that were strongly connected internally, but weakly connected to the rest of the system. Further, these modules had distinct proliferation rates. We conclude that pathway proliferation in ecological networks reveals subgroups of species that will be functionally integrated through cyclic indirect effects.Comment: 29 pages, 2 figures, 3 tables, Submitted to Journal of Theoretical Biolog

    Spatial Aggregation: Theory and Applications

    Full text link
    Visual thinking plays an important role in scientific reasoning. Based on the research in automating diverse reasoning tasks about dynamical systems, nonlinear controllers, kinematic mechanisms, and fluid motion, we have identified a style of visual thinking, imagistic reasoning. Imagistic reasoning organizes computations around image-like, analogue representations so that perceptual and symbolic operations can be brought to bear to infer structure and behavior. Programs incorporating imagistic reasoning have been shown to perform at an expert level in domains that defy current analytic or numerical methods. We have developed a computational paradigm, spatial aggregation, to unify the description of a class of imagistic problem solvers. A program written in this paradigm has the following properties. It takes a continuous field and optional objective functions as input, and produces high-level descriptions of structure, behavior, or control actions. It computes a multi-layer of intermediate representations, called spatial aggregates, by forming equivalence classes and adjacency relations. It employs a small set of generic operators such as aggregation, classification, and localization to perform bidirectional mapping between the information-rich field and successively more abstract spatial aggregates. It uses a data structure, the neighborhood graph, as a common interface to modularize computations. To illustrate our theory, we describe the computational structure of three implemented problem solvers -- KAM, MAPS, and HIPAIR --- in terms of the spatial aggregation generic operators by mixing and matching a library of commonly used routines.Comment: See http://www.jair.org/ for any accompanying file

    Laplacian Dynamics and Multiscale Modular Structure in Networks

    Full text link
    Most methods proposed to uncover communities in complex networks rely on their structural properties. Here we introduce the stability of a network partition, a measure of its quality defined in terms of the statistical properties of a dynamical process taking place on the graph. The time-scale of the process acts as an intrinsic parameter that uncovers community structures at different resolutions. The stability extends and unifies standard notions for community detection: modularity and spectral partitioning can be seen as limiting cases of our dynamic measure. Similarly, recently proposed multi-resolution methods correspond to linearisations of the stability at short times. The connection between community detection and Laplacian dynamics enables us to establish dynamically motivated stability measures linked to distinct null models. We apply our method to find multi-scale partitions for different networks and show that the stability can be computed efficiently for large networks with extended versions of current algorithms.Comment: New discussions on the selection of the most significant scales and the generalisation of stability to directed network

    Optimal network topologies: Expanders, Cages, Ramanujan graphs, Entangled networks and all that

    Full text link
    We report on some recent developments in the search for optimal network topologies. First we review some basic concepts on spectral graph theory, including adjacency and Laplacian matrices, and paying special attention to the topological implications of having large spectral gaps. We also introduce related concepts as ``expanders'', Ramanujan, and Cage graphs. Afterwards, we discuss two different dynamical feautures of networks: synchronizability and flow of random walkers and so that they are optimized if the corresponding Laplacian matrix have a large spectral gap. From this, we show, by developing a numerical optimization algorithm that maximum synchronizability and fast random walk spreading are obtained for a particular type of extremely homogeneous regular networks, with long loops and poor modular structure, that we call entangled networks. These turn out to be related to Ramanujan and Cage graphs. We argue also that these graphs are very good finite-size approximations to Bethe lattices, and provide almost or almost optimal solutions to many other problems as, for instance, searchability in the presence of congestion or performance of neural networks. Finally, we study how these results are modified when studying dynamical processes controlled by a normalized (weighted and directed) dynamics; much more heterogeneous graphs are optimal in this case. Finally, a critical discussion of the limitations and possible extensions of this work is presented.Comment: 17 pages. 11 figures. Small corrections and a new reference. Accepted for pub. in JSTA

    Almost complete and equable heteroclinic networks

    Get PDF
    Heteroclinic connections are trajectories that link invariant sets for an autonomous dynamical flow: these connections can robustly form networks between equilibria, for systems with flow-invariant spaces. In this paper we examine the relation between the heteroclinic network as a flow-invariant set and directed graphs of possible connections between nodes. We consider realizations of a large class of transitive digraphs as robust heteroclinic networks and show that although robust realizations are typically not complete (i.e. not all unstable manifolds of nodes are part of the network), they can be almost complete (i.e. complete up to a set of zero measure within the unstable manifold) and equable (i.e. all sets of connections from a node have the same dimension). We show there are almost complete and equable realizations that can be closed by adding a number of extra nodes and connections. We discuss some examples and describe a sense in which an equable almost complete network embedding is an optimal description of stochastically perturbed motion on the network
    • …
    corecore