48 research outputs found

    Expert-in-the-Loop Multilateral Telerobotics for Haptics-Enabled Motor Function and Skills Development

    Get PDF
    Among medical robotics applications are Robotics-Assisted Mirror Rehabilitation Therapy (RAMRT) and Minimally-Invasive Surgical Training (RAMIST) that extensively rely on motor function development. Haptics-enabled expert-in-the-loop motor function development for such applications is made possible through multilateral telerobotic frameworks. While several studies have validated the benefits of haptic interaction with an expert in motor learning, contradictory results have also been reported. This emphasizes the need for further in-depth studies on the nature of human motor learning through haptic guidance and interaction. The objective of this study was to design and evaluate expert-in-the-loop multilateral telerobotic frameworks with stable and human-safe control loops that enable adaptive “hand-over-hand” haptic guidance for RAMRT and RAMIST. The first prerequisite for such frameworks is active involvement of the patient or trainee, which requires the closed-loop system to remain stable in the presence of an adaptable time-varying dominance factor. To this end, a wave-variable controller is proposed in this study for conventional trilateral teleoperation systems such that system stability is guaranteed in the presence of a time-varying dominance factor and communication delay. Similar to other wave-variable approaches, the controller is initially developed for the Velocity-force Domain (VD) based on the well-known passivity assumption on the human arm in VD. The controller can be applied straightforwardly to the Position-force Domain (PD), eliminating position-error accumulation and position drift, provided that passivity of the human arm in PD is addressed. However, the latter has been ignored in the literature. Therefore, in this study, passivity of the human arm in PD is investigated using mathematical analysis, experimentation as well as user studies involving 12 participants and 48 trials. The results, in conjunction with the proposed wave-variables, can be used to guarantee closed-loop PD stability of the supervised trilateral teleoperation system in its classical format. The classic dual-user teleoperation architecture does not, however, fully satisfy the requirements for properly imparting motor function (skills) in RAMRT (RAMIST). Consequently, the next part of this study focuses on designing novel supervised trilateral frameworks for providing motor learning in RAMRT and RAMIST, each customized according to the requirements of the application. The framework proposed for RAMRT includes the following features: a) therapist-in-the-loop mirror therapy; b) haptic feedback to the therapist from the patient side; c) assist-as-needed therapy realized through an adaptive Guidance Virtual Fixture (GVF); and d) real-time task-independent and patient-specific motor-function assessment. Closed-loop stability of the proposed framework is investigated using a combination of the Circle Criterion and the Small-Gain Theorem. The stability analysis addresses the instabilities caused by: a) communication delays between the therapist and the patient, facilitating haptics-enabled tele- or in-home rehabilitation; and b) the integration of the time-varying nonlinear GVF element into the delayed system. The platform is experimentally evaluated on a trilateral rehabilitation setup consisting of two Quanser rehabilitation robots and one Quanser HD2 robot. The framework proposed for RAMIST includes the following features: a) haptics-enabled expert-in-the-loop surgical training; b) adaptive expertise-oriented training, realized through a Fuzzy Interface System, which actively engages the trainees while providing them with appropriate skills-oriented levels of training; and c) task-independent skills assessment. Closed-loop stability of the architecture is analyzed using the Circle Criterion in the presence and absence of haptic feedback of tool-tissue interactions. In addition to the time-varying elements of the system, the stability analysis approach also addresses communication delays, facilitating tele-surgical training. The platform is implemented on a dual-console surgical setup consisting of the classic da Vinci surgical system (Intuitive Surgical, Inc., Sunnyvale, CA), integrated with the da Vinci Research Kit (dVRK) motor controllers, and the dV-Trainer master console (Mimic Technology Inc., Seattle, WA). In order to save on the expert\u27s (therapist\u27s) time, dual-console architectures can also be expanded to accommodate simultaneous training (rehabilitation) for multiple trainees (patients). As the first step in doing this, the last part of this thesis focuses on the development of a multi-master/single-slave telerobotic framework, along with controller design and closed-loop stability analysis in the presence of communication delays. Various parts of this study are supported with a number of experimental implementations and evaluations. The outcomes of this research include multilateral telerobotic testbeds for further studies on the nature of human motor learning and retention through haptic guidance and interaction. They also enable investigation of the impact of communication time delays on supervised haptics-enabled motor function improvement through tele-rehabilitation and mentoring

    Function based control for bilateral systems in tele-micromanipulation

    Get PDF
    Design of a motion control system should take into account (a) unconstrained motion performed without interaction with environment or any other system, and (b) constrained motion with system in contact with environment or other systems. Control in both cases can be formulated in terms of maintaining desired system configuration what makes essentially the same structure for common tasks: trajectory tracking, interaction force control, compliance control etc. The same design approach can be used to formulate control in bilateral systems aimed to maintain desired functional relations between human and environment through master and slave motion systems. Implementation of the methodology is currently being pursued with a custom built Tele-micromanipulation setup and preliminary results concerning force/position tracking and transparency between master and slave are clearly demonstrated

    Control of Cooperative Haptics-Enabled Teleoperation Systems with Application to Minimally Invasive Surgery

    Get PDF
    Robot-Assisted Minimally Invasive Surgical (RAMIS) systems frequently have a structure of cooperative teleoperator systems where multiple master-slave pairs are used to collaboratively execute a task. Although multiple studies indicate that haptic feedback improves the realism of tool-tissue interaction to the surgeon and leads to better performance for surgical procedures, current telesurgical systems typically do not provide force feedback, mainly because of the inherent stability issues. The research presented in this thesis is directed towards the development of control algorithms for force reflecting cooperative surgical teleoperator systems with improved stability and transparency characteristics. In the case of cooperative force reflecting teleoperation over networks, conventional passivity based approaches may have limited applicability due to potentially non-passive slave-slave interactions and irregular communication delays imposed by the network. In this thesis, an alternative small gain framework for the design of cooperative network-based force reflecting teleoperator systems is developed. Using the small gain framework, control algorithms for cooperative force-reflecting teleoperator systems are designed that guarantee stability in the presence of multiple network-induced communication constraints. Furthermore, the design conservatism typically associated with the small-gain approach is eliminated by using the Projection-Based Force Reflection (PBFR) algorithms. Stability results are established for networked cooperative teleoperator systems under different types of force reflection algorithms in the presence of irregular communication delays. The proposed control approach is consequently implemented on a dual-arm (two masters/two slaves) robotic MIS testbed. The testbed consists of two Haptic Wand devices as masters and two PA10-7C robots as the slave manipulators equipped with da Vinci laparoscopic surgical instruments. The performance of the proposed control approach is evaluated in three different cooperative surgical tasks, which are knot tightening, pegboard transfer, and object manipulation. The experimental results obtained indicate that the PBFR algorithms demonstrate statistically significant performance improvement in comparison with the conventional direct force reflection algorithms. One possible shortcoming of using PBFR algorithms is that implementation of these algorithms may lead to attenuation of the high-frequency component of the contact force which is important, in particular, for haptic perception of stiff surfaces. In this thesis, a solution to this problem is proposed which is based on the idea of separating the different frequency bands in the force reflection signal and consequently applying the projection-based principle to the low-frequency component, while reflecting the high-frequency component directly. The experimental results demonstrate that substantial improvement in transient fidelity of the force feedback is achieved using the proposed method without negative effects on the stability of the system

    Enhanced teleoperation performance using hybrid control and virtual fixture

    Get PDF
    To develop secure, natural and effective teleoperation, the perception of the slave plays a key role for the interaction of a human operator with the environment. By sensing slave information, the human operator can choose the correct operation in a process during the human–robot interaction.This paper develops an integrated scheme based on a hybrid control and virtual fixture approach for the telerobot. The human operator can sense the slave interaction condition and adjust the master device via the surface electromyographic signal. This hybrid control method integrates the proportional-derivative control and the variable stiffness control, and involves the muscle activation at the same time. It is proposed to quantitatively analyse the human operator’s control demand to enhance the control performance of the teleoperation system. In addition, due to unskilful operation and muscle physiological tremor of the human operator, a virtual fixture method is developed to ensure accuracy of operation and to reduce the operation pressure on the human operator. Experimental results demonstrated the effectiveness of the proposed method for the teleoperated robot

    Passivity-Based adaptive bilateral teleoperation control for uncertain manipulators without jerk measurements

    Get PDF
    In this work, we consider the bilateral teleoperation problem of cooperative robotic systems in a Single-Master Multi-Slave (SM/MS) configuration, which is able to perform load transportation tasks in the presence of parametric uncertainty in the robot kinematic and dynamic models. The teleoperation architecture is based on the two-layer approach placed in a hierarchical structure, whose top and bottom layers are responsible for ensuring the transparency and stability properties respectively. The load transportation problem is tackled by using the formation control approach wherein the desired translational velocity and interaction force are provided to the master robot by the user, while the object is manipulated with a bounded constant force by the slave robots. Firstly, we develop an adaptive kinematic-based control scheme based on a composite adaptation law to solve the cooperative control problem for robots with uncertain kinematics. Secondly, the dynamic adaptive control for cooperative robots is implemented by means of a cascade control strategy, which does not require the measurement of the time derivative of force (which requires jerk measurements). The combination of the Lyapunov stability theory and the passivity formalism are used to establish the stability and convergence property of the closed-loop control system. Simulations and experimental results illustrate the performance and feasibility of the proposed control scheme.No presente trabalho, considera-se o problema de teleoperação bilateral de um sistema robótico cooperativo do tipo single-master e multiple-slaves (SM/MS) capaz de realizar tarefas de transporte de carga na presença de incertezas paramétricas no modelo cinemático e dinâmico dos robôs. A arquitetura de teleoperação está baseada na abordagem de duas camadas em estrutura hierárquica, onde as camadas superior e inferior são responsáveis por assegurar as propriedades de transparência e estabilidade respectivamente. O problema de transporte de carga é formulado usando a abordagem de controle de formação onde a velocidade de translação desejada e a força de interação são fornecidas ao robô mestre pelo operador, enquanto o objeto é manipulado pelos robôs escravos com uma força constante limitada. Primeiramente, desenvolve-se um esquema de controle adaptativo cinemático baseado em uma lei de adaptação composta para solucionar o problema de controle cooperativo de robôs com cinemática incerta. Em seguida, o controle adaptativo dinâmico de robôs cooperativos é implementado por meio de uma estratégia de controle em cascata, que não requer a medição da derivada da força (o qual requer a derivada da aceleração ou jerk). A teoria de estabilidade de Lyapunov e o formalismo de passividade são usados para estabelecer as propriedades de estabilidade e a convergência do sistema de controle em malha-fechada. Resultados de simulações numéricas ilustram o desempenho e viabilidade da estratégia de controle proposta

    A Stable and Transparent Framework for Adaptive Shared Control of Robots

    Get PDF
    In mixed-initiative haptic shared control of robots, humans and automatic control system work in parallel. The commands to the robot are a weighted sum of forces from these two agents. This thesis develops control methods to improve the force feedback performance for mixed-initiative shared teleoperation and to adapt the control authority between human and automatic control system in a stable manner even in the presence of communication delays. All methods are validated on real robotic hardware

    Bilateral Control - Operational enhancements

    Get PDF
    A succinct definition of the word bilateral is having two sides [1]. In robotics the term bilateral control is used to define the specific interaction of two systems by means of position and/or force. Bilateral systems are composed of two sides named master and slave side. The aim of such an arrangement is such that position command dictated by master side is followed by a slave side, and at the same time the force sensation of the remote environment experienced by slave is transferred to the mater - human operator. This way bilateral system may be perceived as an “impendanceless” extension of the human operator providing the touch information of the remote (or inaccessible) environment. In a sense bilateral systems are a mechatronics extension of the teleoperated systems. There are many applications of this structure which requires critical manipulations like nuclear material handling, robotic surgery, and micro material handling and assembly. In all these applications a human operator is required to have as close to real as possible contact with object that should be manipulated or in other word the telepresence of the operator is required. In this thesis work various important aspects of bilateral control systems are discussed. These aspects include problems of (i) acquisition of information on master and slave side, (ii) analysis and selection of the proper structure of the control systems to ensure fidelity of the system behavior. The work has been done to enhance the performance of the bilateral control system by: (i) Enhancing position and velocity measurements obtained from incremental encoder having limited number of pulses per revolution. A few algorithms are investigated and their improvements are proposed; (ii) Increasing system robustness by using acceleration controller based on disturbance observer. The robust system design based on disturbance observer is known but its application requires very fast sampling and high bandwidth of the observer. In this work the discrete time realization of the observer is presented in details and selection of the necessary filters and the sampling so to achieve a good trade-off for observer realization is discussed and experimentally confirmed; (iii) Increasing the bandwidth of force sensation by using reaction force observer. For transparent operation of a bilateral system the bandwidth of force sensation is of the major interest. All force sensors do have relatively slow dynamics and observer based structures seems providing better behavior of the overall system. In this work the observer of the interaction force is examined and design procedure is established. In order to verify all of the proposed ideas a versatile bilateral system is designed and built and experimental verification is carried out on this system
    corecore