22 research outputs found

    A weakly stable algorithm for general Toeplitz systems

    Full text link
    We show that a fast algorithm for the QR factorization of a Toeplitz or Hankel matrix A is weakly stable in the sense that R^T.R is close to A^T.A. Thus, when the algorithm is used to solve the semi-normal equations R^T.Rx = A^Tb, we obtain a weakly stable method for the solution of a nonsingular Toeplitz or Hankel linear system Ax = b. The algorithm also applies to the solution of the full-rank Toeplitz or Hankel least squares problem.Comment: 17 pages. An old Technical Report with postscript added. For further details, see http://wwwmaths.anu.edu.au/~brent/pub/pub143.htm

    On recursive least-squares filtering algorithms and implementations

    Get PDF
    In many real-time signal processing applications, fast and numerically stable algorithms for solving least-squares problems are necessary and important. In particular, under non-stationary conditions, these algorithms must be able to adapt themselves to reflect the changes in the system and take appropriate adjustments to achieve optimum performances. Among existing algorithms, the QR-decomposition (QRD)-based recursive least-squares (RLS) methods have been shown to be useful and effective for adaptive signal processing. In order to increase the speed of processing and achieve high throughput rate, many algorithms are being vectorized and/or pipelined to facilitate high degrees of parallelism. A time-recursive formulation of RLS filtering employing block QRD will be considered first. Several methods, including a new non-continuous windowing scheme based on selectively rejecting contaminated data, were investigated for adaptive processing. Based on systolic triarrays, many other forms of systolic arrays are shown to be capable of implementing different algorithms. Various updating and downdating systolic algorithms and architectures for RLS filtering are examined and compared in details, which include Householder reflector, Gram-Schmidt procedure, and Givens rotation. A unified approach encompassing existing square-root-free algorithms is also proposed. For the sinusoidal spectrum estimation problem, a judicious method of separating the noise from the signal is of great interest. Various truncated QR methods are proposed for this purpose and compared to the truncated SVD method. Computer simulations provided for detailed comparisons show the effectiveness of these methods. This thesis deals with fundamental issues of numerical stability, computational efficiency, adaptivity, and VLSI implementation for the RLS filtering problems. In all, various new and modified algorithms and architectures are proposed and analyzed; the significance of any of the new method depends crucially on specific application

    On the stability of the Bareiss and related Toeplitz factorization algorithms

    Get PDF
    This paper contains a numerical stability analysis of factorization algorithms for computing the Cholesky decomposition of symmetric positive definite matrices of displacement rank 2. The algorithms in the class can be expressed as sequences of elementary downdating steps. The stability of the factorization algorithms follows directly from the numerical properties of algorithms for realizing elementary downdating operations. It is shown that the Bareiss algorithm for factorizing a symmetric positive definite Toeplitz matrix is in the class and hence the Bareiss algorithm is stable. Some numerical experiments that compare behavior of the Bareiss algorithm and the Levinson algorithm are presented. These experiments indicate that in general (when the reection coefficients are not all positive) the Levinson algorithm can give much larger residuals than the Bareiss algorithm

    Approximate Inference for Wireless Communications

    Get PDF

    A recursive three-stage least squares method for large-scale systems of simultaneous equations

    Get PDF
    A new numerical method is proposed that uses the QR decomposition (and its variants) to derive recursively the three-stage least squares (3SLS) estimator of large-scale simultaneous equations models (SEM). The 3SLS estimator is obtained sequentially, once the underlying model is modified, by adding or deleting rows of data. A new theoretical pseudo SEM is developed which has a non positive definite dispersion matrix and is proved to yield the 3SLS estimator that would be derived if the modified SEM was estimated afresh. In addition, the computation of the iterative 3SLS estimator of the updated observations SEM is considered. The new recursive method utilizes efficiently previous computations, exploits sparsity in the pseudo SEM and uses as main computational tool orthogonal and hyperbolic matrix factorizations. This allows the estimation of large-scale SEMs which previously could have been considered computationally infeasible to tackle. Numerical trials have confirmed the effectiveness of the new estimation procedures. The new method is illustrated through a macroeconomic application

    Randomized methods for matrix computations

    Full text link
    The purpose of this text is to provide an accessible introduction to a set of recently developed algorithms for factorizing matrices. These new algorithms attain high practical speed by reducing the dimensionality of intermediate computations using randomized projections. The algorithms are particularly powerful for computing low-rank approximations to very large matrices, but they can also be used to accelerate algorithms for computing full factorizations of matrices. A key competitive advantage of the algorithms described is that they require less communication than traditional deterministic methods

    Efficient implementation of a structured total least squares based speech compression method

    Get PDF
    AbstractWe present a fast implementation of a recently proposed speech compression scheme, based on an all-pole model of the vocal tract. Each frame of the speech signal is analyzed by storing the parameters of the complex damped exponentials deduced from the all-pole model and its initial conditions. In mathematical terms, the analysis stage corresponds to solving a structured total least squares (STLS) problem. It is shown that by exploiting the displacement rank structure of the involved matrices the STLS problem can be solved in a very fast way. Synthesis is computationally very cheap since it consists of adding the complex damped exponentials based on the transmitted parameters.The compression scheme is applied on a speech signal. The speed improvement of the fast vocoder analysis scheme is demonstrated. Furthermore, the quality of the compression scheme is compared with that of a standard coding algorithm, by using the segmental signal-to-noise ratio
    corecore