2,240 research outputs found

    Exploring Driving Behavior for Autonomous Vehicles Based on Gramian Angular Field Vision Transformer

    Full text link
    Effective classification of autonomous vehicle (AV) driving behavior emerges as a critical area for diagnosing AV operation faults, enhancing autonomous driving algorithms, and reducing accident rates. This paper presents the Gramian Angular Field Vision Transformer (GAF-ViT) model, designed to analyze AV driving behavior. The proposed GAF-ViT model consists of three key components: GAF Transformer Module, Channel Attention Module, and Multi-Channel ViT Module. These modules collectively convert representative sequences of multivariate behavior into multi-channel images and employ image recognition techniques for behavior classification. A channel attention mechanism is applied to multi-channel images to discern the impact of various driving behavior features. Experimental evaluation on the Waymo Open Dataset of trajectories demonstrates that the proposed model achieves state-of-the-art performance. Furthermore, an ablation study effectively substantiates the efficacy of individual modules within the model

    Distributed workload control for federated service discovery

    Get PDF
    The diffusion of the internet paradigm in each aspect of human life continuously fosters the widespread of new technologies and related services. In the Future Internet scenario, where 5G telecommunication facilities will interact with the internet of things world, analyzing in real time big amounts of data to feed a potential infinite set of services belonging to different administrative domains, the role of a federated service discovery will become crucial. In this paper the authors propose a distributed workload control algorithm to handle efficiently the service discovery requests, with the aim of minimizing the overall latencies experienced by the requesting user agents. The authors propose an algorithm based on the Wardrop equilibrium, which is a gametheoretical concept, applied to the federated service discovery domain. The proposed solution has been implemented and its performance has been assessed adopting different network topologies and metrics. An open source simulation environment has been created allowing other researchers to test the proposed solution

    Mathematics and the Internet: A Source of Enormous Confusion and Great Potential

    Get PDF
    Graph theory models the Internet mathematically, and a number of plausible mathematically intersecting network models for the Internet have been developed and studied. Simultaneously, Internet researchers have developed methodology to use real data to validate, or invalidate, proposed Internet models. The authors look at these parallel developments, particularly as they apply to scale-free network models of the preferential attachment type

    On resilient control of dynamical flow networks

    Full text link
    Resilience has become a key aspect in the design of contemporary infrastructure networks. This comes as a result of ever-increasing loads, limited physical capacity, and fast-growing levels of interconnectedness and complexity due to the recent technological advancements. The problem has motivated a considerable amount of research within the last few years, particularly focused on the dynamical aspects of network flows, complementing more classical static network flow optimization approaches. In this tutorial paper, a class of single-commodity first-order models of dynamical flow networks is considered. A few results recently appeared in the literature and dealing with stability and robustness of dynamical flow networks are gathered and originally presented in a unified framework. In particular, (differential) stability properties of monotone dynamical flow networks are treated in some detail, and the notion of margin of resilience is introduced as a quantitative measure of their robustness. While emphasizing methodological aspects -- including structural properties, such as monotonicity, that enable tractability and scalability -- over the specific applications, connections to well-established road traffic flow models are made.Comment: accepted for publication in Annual Reviews in Control, 201

    On imitation dynamics in potential population games

    Full text link
    Imitation dynamics for population games are studied and their asymptotic properties analyzed. In the considered class of imitation dynamics - that encompass the replicator equation as well as other models previously considered in evolutionary biology - players have no global information about the game structure, and all they know is their own current utility and the one of fellow players contacted through pairwise interactions. For potential population games, global asymptotic stability of the set of Nash equilibria of the sub-game restricted to the support of the initial population configuration is proved. These results strengthen (from local to global asymptotic stability) existing ones and generalize them to a broader class of dynamics. The developed techniques highlight a certain structure of the problem and suggest possible generalizations from the fully mixed population case to imitation dynamics whereby agents interact on complex communication networks.Comment: 7 pages, 3 figures. Accepted at CDC 201
    corecore