8,780 research outputs found

    Implicit and Implicit-Explicit Strong Stability Preserving Runge-Kutta Methods with High Linear Order

    Full text link
    When evolving in time the solution of a hyperbolic partial differential equation, it is often desirable to use high order strong stability preserving (SSP) time discretizations. These time discretizations preserve the monotonicity properties satisfied by the spatial discretization when coupled with the first order forward Euler, under a certain time-step restriction. While the allowable time-step depends on both the spatial and temporal discretizations, the contribution of the temporal discretization can be isolated by taking the ratio of the allowable time-step of the high order method to the forward Euler time-step. This ratio is called the strong stability coefficient. The search for high order strong stability time-stepping methods with high order and large allowable time-step had been an active area of research. It is known that implicit SSP Runge-Kutta methods exist only up to sixth order. However, if we restrict ourselves to solving only linear autonomous problems, the order conditions simplify and we can find implicit SSP Runge-Kutta methods of any linear order. In the current work we aim to find very high linear order implicit SSP Runge-Kutta methods that are optimal in terms of allowable time-step. Next, we formulate an optimization problem for implicit-explicit (IMEX) SSP Runge-Kutta methods and find implicit methods with large linear stability regions that pair with known explicit SSP Runge-Kutta methods of orders plin=3,4,6 as well as optimized IMEX SSP Runge-Kutta pairs that have high linear order and nonlinear orders p=2,3,4. These methods are then tested on sample problems to verify order of convergence and to demonstrate the sharpness of the SSP coefficient and the typical behavior of these methods on test problems

    Exponentially accurate Hamiltonian embeddings of symplectic A-stable Runge--Kutta methods for Hamiltonian semilinear evolution equations

    Get PDF
    We prove that a class of A-stable symplectic Runge--Kutta time semidiscretizations (including the Gauss--Legendre methods) applied to a class of semilinear Hamiltonian PDEs which are well-posed on spaces of analytic functions with analytic initial data can be embedded into a modified Hamiltonian flow up to an exponentially small error. As a consequence, such time-semidiscretizations conserve the modified Hamiltonian up to an exponentially small error. The modified Hamiltonian is O(hp)O(h^p)-close to the original energy where pp is the order of the method and hh the time step-size. Examples of such systems are the semilinear wave equation or the nonlinear Schr\"odinger equation with analytic nonlinearity and periodic boundary conditions. Standard Hamiltonian interpolation results do not apply here because of the occurrence of unbounded operators in the construction of the modified vector field. This loss of regularity in the construction can be taken care of by projecting the PDE to a subspace where the operators occurring in the evolution equation are bounded and by coupling the number of excited modes as well as the number of terms in the expansion of the modified vector field with the step size. This way we obtain exponential estimates of the form O(exp⁑(βˆ’c/h1/(1+q)))O(\exp(-c/h^{1/(1+q)})) with c>0c>0 and qβ‰₯0q \geq 0; for the semilinear wave equation, q=1q=1, and for the nonlinear Schr\"odinger equation, q=2q=2. We give an example which shows that analyticity of the initial data is necessary to obtain exponential estimates
    • …
    corecore