14,512 research outputs found

    [Book Review] H.K. Lam and F.H.F. Leung (2011) Stability Analysis of Fuzzy-Model-Based Control Systems: Linear-Matrix-Inequality Approach, Springer

    Full text link
    This is a book review of Stability Analysis of Fuzzy-Model-Based Control Systems, H.K. Lam, F.H.F. Leung. Springer (2011), ISBN: 978-3642178436Sala, A. (2013). [Book Review] H.K. Lam and F.H.F. Leung (2011) Stability Analysis of Fuzzy-Model-Based Control Systems: Linear-Matrix-Inequality Approach, Springer. Fuzzy Sets and Systems. 225(1):108-109. doi:10.1016/j.fss.2012.10.013S108109225

    Stability analysis and control design for 2-D fuzzy systems via basis-dependent Lyapunov functions

    Get PDF
    This paper investigates the problem of stability analysis and stabilization for two-dimensional (2-D) discrete fuzzy systems. The 2-D fuzzy system model is established based on the Fornasini-Marchesini local state-space model, and a control design procedure is proposed based on a relaxed approach in which basis-dependent Lyapunov functions are used. First, nonquadratic stability conditions are derived by means of linear matrix inequality (LMI) technique. Then, by introducing an additional instrumental matrix variable, the stabilization problem for 2-D fuzzy systems is addressed, with LMI conditions obtained for the existence of stabilizing controllers. Finally, the effectiveness and advantages of the proposed design methods based on basis-dependent Lyapunov functions are shown via two examples. © 2011 The Author(s).published_or_final_versionSpringer Open Choice, 28 May 201

    Fuzzy Controller Design for Nonlinear Systems

    Full text link
    In this article is studied problem of Fuzzy Controller Design For Nonlinear Systems With Case Study Of TORA System. Fuzzy control for nonlinear systems is proposed on the framework from model of Takagi-Sugeno fuzzy model and PDC(paralel distributed compensation) controller. A lyapanouv-based stabilizing fuzzy control design for nonlinear systems using Takagi-Sugeno fuzzy models is applied. The stability analysis and control design problems are reduced to linear of matrix inequality (LMI) problems. So that method of fuzzy controller design are solve a set of LMI. Approach of PDC, robust and optimal controller are applied to a nonlinear control benchmark problem with case study of TORA system. The designed fuzzy controllers are yield an asymtotic stable closed-loop system. The fuzzy controller Simulation results are given to ilustrate the utility of the present fuzzy control

    Sampled-data fuzzy controller for continuous nonlinear systems

    Get PDF
    The sampled-data fuzzy control of nonlinear systems is presented. The consequents of the fuzzy controller rules are linear sampled-data sub-controllers. As a result, the fuzzy controller is a weighted sum of some linear sampled-data sub-controllers that can be implemented by a microcontroller or a digital computer to lower the implementation cost. Consequently, a hybrid fuzzy controller consisting of continuous-time grades of memberships and discrete-time sub-controller is obtained. The system stability of the fuzzy control system is investigated on the basis of Lyapunov-based approach. The sampling activity introduces discontinuity to complicate the system dynamics and make the stability analysis difficult. The proposed fuzzy controller exhibits a favourable property to alleviate the conservativeness of the stability analysis. Furthermore, linear matrix inequality-based performance conditions are derived to guarantee the system performance of the fuzzy control system. An application example is given to illustrate the merits of the proposed approac

    Robust Multi-Criteria Optimal Fuzzy Control of Continuous-Time Nonlinear Systems

    Get PDF
    This paper presents a novel fuzzy control design of continuous-time nonlinear systems with multiple performance criteria. The purpose behind this work is to improve the traditional fuzzy controller performance to satisfy several performance criteria simultaneously to secure quadratic optimality with inherent stability property together with dissipativity type of disturbance reduction. The Takagi– Sugeno fuzzy model is used in our control system design. By solving the linear matrix inequality at each time step, the control solution can be found to satisfy the mixed performance criteria. The effectiveness of the proposed technique is demonstrated by simulation of the control of the inverted pendulum system

    Active sensor fault tolerant output feedback tracking control for wind turbine systems via T-S model

    Get PDF
    This paper presents a new approach to active sensor fault tolerant tracking control (FTTC) for offshore wind turbine (OWT) described via Takagi–Sugeno (T–S) multiple models. The FTTC strategy is designed in such way that aims to maintain nominal wind turbine controller without any change in both fault and fault-free cases. This is achieved by inserting T–S proportional state estimators augmented with proportional and integral feedback (PPI) fault estimators to be capable to estimate different generators and rotor speed sensors fault for compensation purposes. Due to the dependency of the FTTC strategy on the fault estimation the designed observer has the capability to estimate a wide range of time varying fault signals. Moreover, the robustness of the observer against the difference between the anemometer wind speed measurement and the immeasurable effective wind speed signal has been taken into account. The corrected measurements fed to a T–S fuzzy dynamic output feedback controller (TSDOFC) designed to track the desired trajectory. The stability proof with H∞ performance and D-stability constraints is formulated as a Linear Matrix Inequality (LMI) problem. The strategy is illustrated using a non-linear benchmark system model of a wind turbine offered within a competition led by the companies Mathworks and KK-Electronic

    H∞ fuzzy control for systems with repeated scalar nonlinearities and random packet losses

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the H∞ fuzzy control problem for a class of systems with repeated scalar nonlinearities and random packet losses. A modified Takagi-Sugeno (T-S) fuzzy model is proposed in which the consequent parts are composed of a set of discrete-time state equations containing a repeated scalar nonlinearity. Such a model can describe some well-known nonlinear systems such as recurrent neural networks. The measurement transmission between the plant and controller is assumed to be imperfect and a stochastic variable satisfying the Bernoulli random binary distribution is utilized to represent the phenomenon of random packet losses. Attention is focused on the analysis and design of H∞ fuzzy controllers with the same repeated scalar nonlinearities such that the closed-loop T-S fuzzy control system is stochastically stable and preserves a guaranteed H∞ performance. Sufficient conditions are obtained for the existence of admissible controllers, and the cone complementarity linearization procedure is employed to cast the controller design problem into a sequential minimization one subject to linear matrix inequalities, which can be readily solved by using standard numerical software. Two examples are given to illustrate the effectiveness of the proposed design method

    On passivity and passification of stochastic fuzzy systems with delays: The discrete-time case

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.Takagi–Sugeno (T-S) fuzzy models, which are usually represented by a set of linear submodels, can be used to describe or approximate any complex nonlinear systems by fuzzily blending these subsystems, and so, significant research efforts have been devoted to the analysis of such models. This paper is concerned with the passivity and passification problems of the stochastic discrete-time T-S fuzzy systems with delay. We first propose the definition of passivity in the sense of expectation. Then, by utilizing the Lyapunov functional method, the stochastic analysis combined with the matrix inequality techniques, a sufficient condition in terms of linear matrix inequalities is presented, ensuring the passivity performance of the T-S fuzzy models. Finally, based on this criterion, state feedback controller is designed, and several criteria are obtained to make the closed-loop system passive in the sense of expectation. The results acquired in this paper are delay dependent in the sense that they depend on not only the lower bound but also the upper bound of the time-varying delay. Numerical examples are also provided to demonstrate the effectiveness and feasibility of our criteria.This work was supported in part by the Royal Society Sino–British Fellowship Trust Award of the U.K., by the National Natural Science Foundation of China under Grant 60804028, by the Specialized Research Fund for the Doctoral Program of Higher Education for New Teachers in China under Grant 200802861044, and by the Teaching and Research Fund for Excellent Young Teachers at Southeast University of China
    corecore