10,739 research outputs found

    Trajectory Tracking Using Adaptive Fractional PID Control of Biped Robots with Time-Delay Feedback

    Get PDF
    This paper presents the application of fractional order time-delay adaptive neural networks to the trajectory tracking for chaos synchronization between Fractional Order delayed plant, reference and fractional order time-delay adaptive neural networks. For this purpose, we obtained two control laws and laws of adaptive weights online, obtained using the fractional order Lyapunov-Krasovskii stability analysis methodology. The main methodologies, on which the approach is based, are fractional order PID the fractional order Lyapunov-Krasovskii functions methodology, although the results we obtain are applied to a wide class of non-linear systems, we will apply it in this chapter to a bipedal robot. The structure of the biped robot is designed with two degrees of freedom per leg, corresponding to the knee and hip joints. Since torso and ankle are not considered, it is obtained a 4-DOF system, and each leg, we try to force this biped robot to track a reference signal given by undamped Duffing equation. To verify the analytical results, an example of dynamical network is simulated, and two theorems are proposed to ensure the tracking of the nonlinear system. The tracking error is globally asymptotically stabilized by two control laws derived based on a Lyapunov-Krasovskii functional

    A novel delay-dependent asymptotic stability conditions for differential and Riemann-Liouville fractional differential neutral systems with constant delays and nonlinear perturbation

    Get PDF
    The novel delay-dependent asymptotic stability of a differential and Riemann-Liouville fractional differential neutral system with constant delays and nonlinear perturbation is studied. We describe the new asymptotic stability criterion in the form of linear matrix inequalities (LMIs), using the application of zero equations, model transformation and other inequalities. Then we show the new delay-dependent asymptotic stability criterion of a differential and Riemann-Liouville fractional differential neutral system with constant delays. Furthermore, we not only present the improved delay-dependent asymptotic stability criterion of a differential and Riemann-Liouville fractional differential neutral system with single constant delay but also the new delay-dependent asymptotic stability criterion of a differential and Riemann-Liouville fractional differential neutral equation with constant delays. Numerical examples are exploited to represent the improvement and capability of results over another research as compared with the least upper bounds of delay and nonlinear perturbation.This work is supported by Science Achievement Scholarship of Thailand (SAST), Research and Academic Affairs Promotion Fund, Faculty of Science, Khon Kaen University, Fiscal year 2020 and National Research Council of Thailand and Khon Kaen University, Thailand (6200069)

    A novel delay-dependent asymptotic stability conditions for differential and Riemann-Liouville fractional differential neutral systems with constant delays and nonlinear perturbation

    Get PDF
    The novel delay-dependent asymptotic stability of a differential and Riemann-Liouville fractional differential neutral system with constant delays and nonlinear perturbation is studied. We describe the new asymptotic stability criterion in the form of linear matrix inequalities (LMIs), using the application of zero equations, model transformation and other inequalities. Then we show the new delay-dependent asymptotic stability criterion of a differential and Riemann-Liouville fractional differential neutral system with constant delays. Furthermore, we not only present the improved delay-dependent asymptotic stability criterion of a differential and Riemann-Liouville fractional differential neutral system with single constant delay but also the new delay-dependent asymptotic stability criterion of a differential and Riemann-Liouville fractional differential neutral equation with constant delays. Numerical examples are exploited to represent the improvement and capability of results over another research as compared with the least upper bounds of delay and nonlinear perturbation.This work is supported by Science Achievement Scholarship of Thailand (SAST), Research and Academic Affairs Promotion Fund, Faculty of Science, Khon Kaen University, Fiscal year 2020 and National Research Council of Thailand and Khon Kaen University, Thailand (6200069)

    On the validity of memristor modeling in the neural network literature

    Full text link
    An analysis of the literature shows that there are two types of non-memristive models that have been widely used in the modeling of so-called "memristive" neural networks. Here, we demonstrate that such models have nothing in common with the concept of memristive elements: they describe either non-linear resistors or certain bi-state systems, which all are devices without memory. Therefore, the results presented in a significant number of publications are at least questionable, if not completely irrelevant to the actual field of memristive neural networks

    Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network

    Full text link
    Because of their effectiveness in broad practical applications, LSTM networks have received a wealth of coverage in scientific journals, technical blogs, and implementation guides. However, in most articles, the inference formulas for the LSTM network and its parent, RNN, are stated axiomatically, while the training formulas are omitted altogether. In addition, the technique of "unrolling" an RNN is routinely presented without justification throughout the literature. The goal of this paper is to explain the essential RNN and LSTM fundamentals in a single document. Drawing from concepts in signal processing, we formally derive the canonical RNN formulation from differential equations. We then propose and prove a precise statement, which yields the RNN unrolling technique. We also review the difficulties with training the standard RNN and address them by transforming the RNN into the "Vanilla LSTM" network through a series of logical arguments. We provide all equations pertaining to the LSTM system together with detailed descriptions of its constituent entities. Albeit unconventional, our choice of notation and the method for presenting the LSTM system emphasizes ease of understanding. As part of the analysis, we identify new opportunities to enrich the LSTM system and incorporate these extensions into the Vanilla LSTM network, producing the most general LSTM variant to date. The target reader has already been exposed to RNNs and LSTM networks through numerous available resources and is open to an alternative pedagogical approach. A Machine Learning practitioner seeking guidance for implementing our new augmented LSTM model in software for experimentation and research will find the insights and derivations in this tutorial valuable as well.Comment: 43 pages, 10 figures, 78 reference

    Stability analysis of a hypothalamic-pituitary-adrenal axis model with inclusion of glucocorticoid receptor and memory

    Full text link
    This paper analyzes a four-dimensional model of the hypothalamic-pituitary-adrenal (HPA) axis that includes the influence of the glucocorticoid receptor in the pituitary. Due to the spatial separation between the hypothalamus, pituitary and adrenal glands, distributed time delays are introduced in the mathematical model. The existence of the positive equilibrium point is proved and a local stability and bifurcation analysis is provided, considering several types of delay kernels. The fractional-order model with discrete time delays is also taken into account. Numerical simulations are provided to illustrate the effectiveness of the theoretical findings.Comment: 9 page
    • …
    corecore