355 research outputs found

    Stability of delay Hopfield neural networks with generalized proportional Riemann-Liouville fractional derivative

    Get PDF
    The general delay Hopfield neural network is studied. It is considered the case of time-varying delay, continuously distributed delays, time varying coefficients and a special type of a Riemann-Liouville fractional derivative (GPRLFD) with an exponential kernel. The presence of delays and GPRLFD in the model require two special types of initial conditions. The applied GPRLFD also required a special definition of the equilibrium of the model. A constant equilibrium of the model is defined. We use Razumikhin method and Lyapunov functions to study stability properties of the equilibrium of the model. We apply Lyapunov functions defined by absolute values as well as quadratic Lyapunov functions. We prove some comparison results for Lyapunov function connected deeply with the applied GPRLFD and use them to obtain exponential bounds of the solutions. These bounds are satisfied for intervals excluding the initial time. Also, the convergence of any solution of the model to the equilibrium at infinity is proved. An example illustrating the importance of our theoretical results is also included

    A delay-dividing approach to robust stability of uncertain stochastic complex-valued Hopfield delayed neural networks

    Full text link
    In scientific disciplines and other engineering applications, most of the systems refer to uncertainties, because when modeling physical systems the uncertain parameters are unavoidable. In view of this, it is important to investigate dynamical systems with uncertain parameters. In the present study, a delay-dividing approach is devised to study the robust stability issue of uncertain neural networks. Specifically, the uncertain stochastic complex-valued Hopfield neural network (USCVHNN) with time delay is investigated. Here, the uncertainties of the system parameters are norm-bounded. Based on the Lyapunov mathematical approach and homeomorphism principle, the sufficient conditions for the global asymptotic stability of USCVHNN are derived. To perform this derivation, we divide a complex-valued neural network (CVNN) into two parts, namely real and imaginary, using the delay-dividing approach. All the criteria are expressed by exploiting the linear matrix inequalities (LMIs). Based on two examples, we obtain good theoretical results that ascertain the usefulness of the proposed delay-dividing approach for the USCVHNN model

    Stochastic memristive quaternion-valued neural networks with time delays: An analysis on mean square exponential input-to-state stability

    Full text link
    In this paper, we study the mean-square exponential input-to-state stability (exp-ISS) problem for a new class of neural network (NN) models, i.e., continuous-time stochastic memristive quaternion-valued neural networks (SMQVNNs) with time delays. Firstly, in order to overcome the difficulties posed by non-commutative quaternion multiplication, we decompose the original SMQVNNs into four real-valued models. Secondly, by constructing suitable Lyapunov functional and applying Itoˆ’s formula, Dynkin’s formula as well as inequity techniques, we prove that the considered system model is mean-square exp-ISS. In comparison with the conventional research on stability, we derive a new mean-square exp-ISS criterion for SMQVNNs. The results obtained in this paper are the general case of previously known results in complex and real fields. Finally, a numerical example has been provided to show the effectiveness of the obtained theoretical results

    Neural network models: their theoretical capabilities and relevance to biology

    Get PDF

    State estimation for discrete-time neural networks with Markov-mode-dependent lower and upper bounds on the distributed delays

    Get PDF
    Copyright @ 2012 Springer VerlagThis paper is concerned with the state estimation problem for a new class of discrete-time neural networks with Markovian jumping parameters and mixed time-delays. The parameters of the neural networks under consideration switch over time subject to a Markov chain. The networks involve both the discrete-time-varying delay and the mode-dependent distributed time-delay characterized by the upper and lower boundaries dependent on the Markov chain. By constructing novel Lyapunov-Krasovskii functionals, sufficient conditions are firstly established to guarantee the exponential stability in mean square for the addressed discrete-time neural networks with Markovian jumping parameters and mixed time-delays. Then, the state estimation problem is coped with for the same neural network where the goal is to design a desired state estimator such that the estimation error approaches zero exponentially in mean square. The derived conditions for both the stability and the existence of desired estimators are expressed in the form of matrix inequalities that can be solved by the semi-definite programme method. A numerical simulation example is exploited to demonstrate the usefulness of the main results obtained.This work was supported in part by the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 60774073 and 61074129, and the Natural Science Foundation of Jiangsu Province of China under Grant BK2010313

    Stability analysis for delayed quaternion-valued neural networks via nonlinear measure approach

    Get PDF
    In this paper, the existence and stability analysis of the quaternion-valued neural networks (QVNNs) with time delay are considered. Firstly, the QVNNs are equivalently transformed into four real-valued systems. Then, based on the Lyapunov theory, nonlinear measure approach, and inequality technique, some sufficient criteria are derived to ensure the existence and uniqueness of the equilibrium point as well as global stability of delayed QVNNs. In addition, the provided criteria are presented in the form of linear matrix inequality (LMI), which can be easily checked by LMI toolbox in MATLAB. Finally, two simulation examples are demonstrated to verify the effectiveness of obtained results. Moreover, the less conservatism of the obtained results is also showed by two comparison examples

    Finite-Time Stability of Fractional-Order BAM Neural Networks with Distributed Delay

    Get PDF
    Based on the theory of fractional calculus, the generalized Gronwall inequality and estimates of mittag-Leffer functions, the finite-time stability of Caputo fractional-order BAM neural networks with distributed delay is investigated in this paper. An illustrative example is also given to demonstrate the effectiveness of the obtained result
    corecore